請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41034
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃慶璨 | |
dc.contributor.author | Min-Tzu Lo | en |
dc.contributor.author | 羅敏慈 | zh_TW |
dc.date.accessioned | 2021-06-14T17:13:01Z | - |
dc.date.available | 2011-07-30 | |
dc.date.copyright | 2008-07-30 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-25 | |
dc.identifier.citation | 1.Ackroyd, R., C. Kelty, N. Brown, and M. Reed. 2001. The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656-69.
2.Allen, T. M. 1994. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci 15:215-20. 3.Bertoloni, G., E. Reddi, M. Gatta, C. Burlini, and G. Jori. 1989. Factors influencing the haematoporphyrin-sensitized photoinactivation of Candida albicans. J Gen Microbiol 135:957-66. 4.Boessmann, M., T. R. Neu, H. Horn, and D. C. Hempel. 2004. Growth, structure and oxygen penetration in particle supported autotrophic biofilms. Water Sci Technol 49:371-7. 5.Bone, R. C., W. J. Sibbald, and C. L. Sprung. 1992. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 101:1481-3. 6.Chang, C. C., J. F. Chu, F. J. Kao, Y. C. Chiu, P. J. Lou, H. C. Chen, and T. C. Chang. 2006. Verification of antiparallel G-quadruplex structure in human telomeres by using two-photon excitation fluorescence lifetime imaging microscopy of the 3,6-Bis(1-methyl-4-vinylpyridinium)carbazole diiodide molecule. Anal Chem 78:2810-5. 7.Chang, C. C., J. Y. Wu, C. W. Chien, W. S. Wu, H. Liu, C. C. Kang, L. J. Yu, and T. C. Chang. 2003. A fluorescent carbazole derivative: high sensitivity for quadruplex DNA. Anal Chem 75:6177-83. 8.Chen, H. M., C. P. Chiang, C. You, T. C. Hsiao, and C. Y. Wang. 2005. Time-resolved autofluorescence spectroscopy for classifying normal and premalignant oral tissues. Lasers Surg Med 37:37-45. 9.Chen, Q., Z. Huang, H. Chen, H. Shapiro, J. Beckers, and F. W. Hetzel. 2002. Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem Photobiol 76:197-203. 10.Clo, E., J. W. Snyder, P. R. Ogilby, and K. V. Gothelf. 2007. Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems. Chembiochem 8:475-81. 11.Dolan, S. 2003. Severe sepsis--a major challenge for critical care. Intensive Crit Care Nurs 19:63-7. 12.Dolmans, D. E., D. Fukumura, and R. K. Jain. 2003. Photodynamic therapy for cancer. Nat Rev Cancer 3:380-7. 13.Donlan, R. M. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881-90. 14.Dougherty, T. J., C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng. 1998. Photodynamic therapy. J Natl Cancer Inst 90:889-905. 15.Dougherty, T. J., J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle, and A. Mittleman. 1978. Photoradiation therapy for the treatment of malignant tumors. Cancer Res 38:2628-35. 16.Elasri, M. O., and R. V. Miller. 1999. Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65:2025-31. 17.Friedberg, J. S., C. Skema, E. D. Baum, J. Burdick, S. A. Vinogradov, D. F. Wilson, A. D. Horan, and I. Nachamkin. 2001. In vitro effects of photodynamic therapy on Aspergillus fumigatus. J Antimicrob Chemother 48:105-7. 18.Giepmans, B. N., S. R. Adams, M. H. Ellisman, and R. Y. Tsien. 2006. The fluorescent toolbox for assessing protein location and function. Science 312:217-24. 19.Hsi, R. A., D. I. Rosenthal, and E. Glatstein. 1999. Photodynamic therapy in the treatment of cancer: current state of the art. Drugs 57:725-34. 20.Kalka, K., H. Merk, and H. Mukhtar. 2000. Photodynamic therapy in dermatology. J Am Acad Dermatol 42:389-413; quiz 414-6. 21.Karrer, S., R. M. Szeimies, C. Abels, U. Wlotzke, W. Stolz, and M. Landthaler. 1999. Epidermodysplasia verruciformis treated using topical 5-aminolaevulinic acid photodynamic therapy. Br J Dermatol 140:935-8. 22.Kelly, J. F., and M. E. Snell. 1976. Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol 115:150-1. 23.Kelly, J. F., M. E. Snell, and M. C. Berenbaum. 1975. Photodynamic destruction of human bladder carcinoma. Br J Cancer 31:237-44. 24.Klein, M. 1947. A mechanism for the development of resistance to streptomycin and penicillin. J Bacteriol 53:463-7. 25.Kraljic, I., and S. E. Mohsni. 1978. A new method for the detection of singlet oxygen in aqueous solutions. Photochem and Photobiol 28:577-581. 26.Leive, L. 1965. A nonspecific increase in permeability in Escherichia coli produced by Edta. Proc Natl Acad Sci USA 53:745-50. 27.Liu, D., A. Mori, and L. Huang. 1992. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta 1104:95-101. 28.Maisch, T., J. Baier, B. Franz, M. Maier, M. Landthaler, R. M. Szeimies, and W. Baumler. 2007. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc Natl Acad Sci USA 104:7223-8. 29.Marquez, G., L. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen. 1998. Anisotropy in the absorption and scattering spectra of chicken breast tissue. Appl Opt 37:798-804. 30.Merchat, M., J. D. Spikes, G. Bertoloni, and G. Jori. 1996. Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. J Photochem Photobiol B 35:149-57. 31.Millson, C. E., M. Wilson, A. J. MacRobert, and S. G. Bown. 1996. Ex-vivo treatment of gastric Helicobacter infection by photodynamic therapy. J Photochem Photobiol B 32:59-65. 32.Minnock, A., D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish, and S. T. Brown. 1996. Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both Gram-negative and Gram-positive bacteria. J Photochem Photobiol B 32:159-64. 33.Padula, M., and S. Boiteux. 1999. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae. Braz J Med Biol Res 32:1063-71. 34.Pakkiri, L. S., and C. J. Waechter. 2005. Dimannosyldiacylglycerol serves as a lipid anchor precursor in the assembly of the membrane-associated lipomannan in Micrococcus luteus. Glycobiology 15:291-302. 35.Parsek, M. R., and C. Fuqua. 2004. Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186:4427-40. 36.Rovaldi, C. R., A. Pievsky, N. A. Sole, P. M. Friden, D. M. Rothstein, and P. Spacciapoli. 2000. Photoactive porphyrin derivative with broad-spectrum activity against oral pathogens In vitro. Antimicrob Agents Chemother 44:3364-7. 37.Schwartz, S. 1955. Porphyrins and porphyrin precursors in human and experimental porphyria. Fed Proc 14:717-22. 38.Smijs, T. G., and H. J. Schuitmaker. 2003. Photodynamic inactivation of the dermatophyte Trichophyton rubrum. Photochem Photobiol 77:556-60. 39.Smijs, T. G., R. N. van der Haas, J. Lugtenburg, Y. Liu, R. L. de Jong, and H. J. Schuitmaker. 2004. Photodynamic treatment of the dermatophyte Trichophyton rubrum and its microconidia with porphyrin photosensitizers. Photochem Photobiol 80:197-202. 40.Tegos, G. P., M. Anbe, C. Yang, T. N. Demidova, M. Satti, P. Mroz, S. Janjua, F. Gad, and M. R. Hamblin. 2006. Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorin(e6) for broad-spectrum antimicrobial photoinactivation. Antimicrob Agents Chemother 50:1402-10. 41.Teichert, M. C., J. W. Jones, M. N. Usacheva, and M. A. Biel. 2002. Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93:155-60. 42.Theraud, M., Y. Bedouin, C. Guiguen, and J. P. Gangneux. 2004. Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and biofilm conditions. J Med Microbiol 53:1013-8. 43.Usacheva, M. N., M. C. Teichert, and M. A. Biel. 2001. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against Gram-positive and Gram-negative microorganisms. Lasers Surg Med 29:165-73. 44.Wainwright, M. 1998. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13-28. 45.Walker, J. T., D. J. Bradshaw, A. M. Bennett, M. R. Fulford, M. V. Martin, and P. D. Marsh. 2000. Microbial biofilm formation and contamination of dental-unit water systems in general dental practice. Appl Environ Microbiol 66:3363-7. 46.Walker, S. A., S. Fantini, and E. Gratton. 1997. Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media. Appl Opt 36:170-4. 47.Wile, A. G., A. Dahlman, R. G. Burns, and M. W. Berns. 1982. Laser photoradiation therapy of cancer following hematoporphyrin sensitization. Lasers Surg Med 2:163-8. 48.Wilson, M., and N. Mia. 1993. Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22:354-7. 49.Xiong, Y. Q., K. Mukhopadhyay, M. R. Yeaman, J. Adler-Moore, and A. S. Bayer. 2005. Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrob Agents Chemother 49:3114-21. 50.Yamakoshi, Y., N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, and T. Nagano. 2003. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. J Am Chem Soc 125:12803-9. 51.Zeina, B., J. Greenman, W. M. Purcell, and B. Das. 2001. Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol 144:274-8. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41034 | - |
dc.description.abstract | 光動力療法 (photodynamic therapy) 係利用光感物質 (photosensitizer) 經特定波長光源激發後所產生之單態氧 (singlet oxygen) 與自由基造成菌體傷害;臨床上已被大量應用在毒殺癌細胞,作為微生物防治方亦具有顯著效果。本研究將探討本身為螢光探針的BMVC (3, 6-bis(1-methyl- 4-vinylpyridinium)carbazole diiodide),經過特定波長光源激發後的光動力作用之抑菌效果;及其作為光感物質的特性分析。結果顯示,BMVC 引起之光動力作用可抑制革蘭氏陽性菌 Staphylococcus aureus 與 Micrococcus luteus,且殺菌效果隨光感物質濃度與照光劑量增加而增強,作用於革蘭氏陰性菌Escherichia coli則需提高光感物質濃度與照光劑量達 10 倍以上才具有毒殺效果,即 BMVC 可作為光感物質進行光動力抑菌作用。當BMVC與不同G+C含量之 DNA 結合時,吸收與螢光光譜會有差異,除螢光強度增強,最大放射波長 (emission wavelength) 會出現紅移 (red-shift) 現象,故此螢光探針亦可發展出光動力診斷 (photodynamic diagnosis) 的用途。由蒲朗克定律 (planck law) 可知光波波長與能量的關係;故本研究以光化學角度探討光譜差異性與光動力抑菌作用的關係。由於BMVC與AT的結合力比GC好,分子結構穩定的情況下將減少電子發生內部轉換的機會,即相同的電子濃度被激發,能有越多電子躍遷至激發單重態 (excited singlet state),接著釋放能量發散螢光回到基態;亦可經由系統間跨越 (intersystem crossing) 至激發三重態 (excited triplet state) 後,再透過能量轉移產生單態氧。實驗結果亦證實,BMVC 引起之光動力作用對於毒殺低G+C含量的 Staphylococcus aureus 的效果,比高G+C含量的 Micrococcus luteus 更為顯著。本研究之 BMVC 除本身所具有的螢光標定性,可區分不同結構之 DNA,亦可作為光感物質發展光動力治療,應用於微生物防治更具潛力。 | zh_TW |
dc.description.abstract | Photodynamic therapy (PDT) utilizes a nontoxic photosensitizer upon irradiation with an appropriate wavelength in the presence of oxygen, then generating cytotoxic reactive oxygen species to inactivate cancer cells as well as microorganisms. The goal of this study is to investigate the role of a novel fluorescence probe BMVC (3, 6-bis(1-methyl-4- vinylpyridium)carbazole diiodide) in the photodynamic inactivation against bacteria. BMVC showed more significant phototoxicity against Gram positive Staphylococcus aureus and Micrococcus luteus than Gram negative Escherichia coli. The fluorescence intensity of BMVC was much higher when interacting with DNA, and increased with increasing of AT to GC ratio. In addition, the emission maximum appeared red-shift in the presence of GC. The BMVC-mediated photodynamic inactivation showed more significant efficacy against low G+C content Staphylococcus aureus than high G+C content Micrococcus luteus. The difference can be attributed to the stable structures of BMVC-AT complex, resulting in better efficacy against low G+C content Gram positive bacteria. The quenching by NaN3, a specific quencher to singlet oxygen, did not complete neutralize the BMVC-mediated photodynamic inactivation against Staphylococcus aureus and Micrococcus luteus, indicating that the photodynamic action of BMVC mixed with the formation of both free radicals and singlet oxygen. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:13:01Z (GMT). No. of bitstreams: 1 ntu-97-R95B47405-1.pdf: 745897 bytes, checksum: 5f41433f77839a33a1bad38c02a01f4c (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 謝誌 II
中文摘要 III ABSTRACT IV 圖目錄 VII 第一章 序論 1 1 微生物感染之防治 1 2光動力醫學 2 2.1起源與發展 2 2.1.1光化學反應作用原理 3 2.2光動力診斷 8 2.3光動力治療 9 2.3.1光感物質 10 2.3.2光源 11 2.3.3作用機制 11 2.3.4光動力治療的應用與發展 13 3 BMVC的特性與發展潛力 14 3.1 BMVC的特性 14 3.2 BMVC作為光感物質的潛力 14 4研究動機與目的 16 第二章 材料與方法 18 1 菌種 18 1.1懸浮菌體培養與定量 18 2 藥品配製 19 2.1等張磷酸鹽緩衝液之配製 19 2.2 BMVC原液之配製 19 3 光源設備 19 4 活菌數定量分析 19 5 懸浮細胞之原生質體製備 20 5.1 金黃葡萄球菌之原生質體製備 20 5.2 藤黃微球菌之原生質體製備 20 6 BMVC對懸浮菌體之光動力抑制作用 20 7 BMVC與生物分子之光譜特性分析 21 7.1 BMVC之光譜特性分析 21 7.2 寡聚核苷酸之光化學圖譜分析 21 7.3 肽聚醣之光化學圖譜分析 21 7.4 染色體DNA之光化學圖譜分析 21 7.5 懸浮細胞之光化學圖譜分析 22 7.6 原生質體之光化學圖譜分析 22 8 BMVC的光動力作用機制 23 8.1 活性氧分子生成分析 23 8.1.1 自由基活性氧分子分析 23 8.1.2 單態氧分析 23 8.2 淬滅劑干擾試驗 23 8.2.1 自由基活性氧分子分析 23 8.2.2 單態氧分析試驗 24 8.3 光感物質攝取量分析 24 9 淬滅劑對懸浮菌體之光動力抑制的影響 24 10 統計分析 24 第三章 結果 25 一、BMVC對革蘭氏陽性與陰性細菌之光動力抑菌效果 25 二、BMVC與不同生物分子及菌體結合之光譜特性分析 26 三、BMVC對不同 G+C 含量的細菌之光動力抑菌效果 29 四、BMVC之光動力抑菌作用的機制 31 第四章 討論 34 一、BMVC之光動力抑菌作用及其作用機制 34 二、BMVC之光譜特性分析 36 三、從光譜分析探討光動力抑菌作用的差異性 37 第五章 結論與未來展望 38 第六章 參考文獻 67 | |
dc.language.iso | zh-TW | |
dc.title | 新型光感物質BMVC之特性分析及其光動力抑菌作用 | zh_TW |
dc.title | Characteristics of a novel photosensitizer BMVC and its application on microbial photoinactivation | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張大釗,許瑞祥,陳進庭,楊啟伸 | |
dc.subject.keyword | BMVC,G+C含量,光動力治療, | zh_TW |
dc.subject.keyword | BMVC,G+C content,photodynamic therapy, | en |
dc.relation.page | 69 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-28 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 728.42 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。