請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李芳仁 | |
| dc.contributor.author | Hsu-Feng Wu | en |
| dc.contributor.author | 吳旭豐 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:12:52Z | - |
| dc.date.available | 2016-10-05 | |
| dc.date.copyright | 2011-10-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-11 | |
| dc.identifier.citation | Bellanger, J. M., C. Astier, et al. (2000). 'The Rac1- and RhoG-specific GEF domain of Trio targets filamin to remodel cytoskeletal actin.' Nat Cell Biol 2(12): 888-892.
Bonifacino, J. S. (2004). 'The GGA proteins: adaptors on the move.' Nat Rev Mol Cell Biol 5(1): 23-32. Calderwood, D. A., A. Huttenlocher, et al. (2001). 'Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration.' Nat Cell Biol 3(12): 1060-1068. Chardin, P., S. Paris, et al. (1996). 'A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains.' Nature 384(6608): 481-484. Chen, H. W., J. Y. Lee, et al. (2008). 'Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1.' Cancer Res 68(18): 7428-7438. Chu, Y. W., P. C. Yang, et al. (1997). 'Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line.' Am J Respir Cell Mol Biol 17(3): 353-360. Clark, J., L. Moore, et al. (1993). 'Selective amplification of additional members of the ADP-ribosylation factor (ARF) family: cloning of additional human and Drosophila ARF-like genes.' Proc Natl Acad Sci U S A 90(19): 8952-8956. Claude, A., B. P. Zhao, et al. (1999). 'GBF1: A novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5.' J Cell Biol 146(1): 71-84. Cook, A., F. Bono, et al. (2007). 'Structural biology of nucleocytoplasmic transport.' Annu Rev Biochem 76: 647-671. Cunningham, C. C., J. B. Gorlin, et al. (1992). 'Actin-binding protein requirement for cortical stability and efficient locomotion.' Science 255(5042): 325-327. de Curtis, I. (2001). 'Cell migration: GAPs between membrane traffic and the cytoskeleton.' EMBO Rep 2(4): 277-281. Donaldson, J. G. (2003). 'Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane.' J Biol Chem 278(43): 41573-41576. Donovan, S., K. M. Shannon, et al. (2002). 'GTPase activating proteins: critical regulators of intracellular signaling.' Biochim Biophys Acta 1602(1): 23-45. Engel, T., A. Lueken, et al. (2004). 'ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export.' FEBS Lett 566(1-3): 241-246. Feng, Y., M. H. Chen, et al. (2006). 'Filamin A (FLNA) is required for cell-cell contact 65 in vascular development and cardiac morphogenesis.' Proc Natl Acad Sci U S A 103(52): 19836-19841. Feng, Y. and C. A. Walsh (2004). 'The many faces of filamin: a versatile molecular scaffold for cell motility and signalling.' Nat Cell Biol 6(11): 1034-1038. Flanagan, L. A., J. Chou, et al. (2001). 'Filamin A, the Arp2/3 complex, and the morphology and function of cortical actin filaments in human melanoma cells.' J Cell Biol 155(4): 511-517. Gawecka, J. E., G. S. Griffiths, et al. (2010). 'R-Ras regulates migration through an interaction with filamin A in melanoma cells.' PLoS One 5(6): e11269. Gorlin, J. B., R. Yamin, et al. (1990). 'Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring.' J Cell Biol 111(3): 1089-1105. Hall, A. (1998). 'Rho GTPases and the actin cytoskeleton.' Science 279(5350): 509-514. Hayashi, K. and A. Altman (2006). 'Filamin A is required for T cell activation mediated by protein kinase C-theta.' J Immunol 177(3): 1721-1728. Heuze, M. L., I. Lamsoul, et al. (2008). 'ASB2 targets filamins A and B to proteasomal degradation.' Blood 112(13): 5130-5140. Hofmann, I., A. Thompson, et al. (2007). 'The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane.' Curr Biol 17(8): 711-716. Ivaska, J., K. Vuoriluoto, et al. (2005). 'PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility.' EMBO J 24(22): 3834-3845. Jacobs, S., C. Schilf, et al. (1999). 'ADP-ribosylation factor (ARF)-like 4, 6, and 7 represent a subgroup of the ARF family characterization by rapid nucleotide exchange and a nuclear localization signal.' FEBS Lett 456(3): 384-388. Kahn, R. A., J. Cherfils, et al. (2006). 'Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins.' J Cell Biol 172(5): 645-650. Kozma, R., S. Ahmed, et al. (1995). 'The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts.' Mol Cell Biol 15(4): 1942-1952. Laemmli, U. K. (1970). 'Cleavage of structural proteins during the assembly of the head of bacteriophage T4.' Nature 227(5259): 680-685. Li, Y., W. G. Kelly, et al. (2004). 'Functional genomic analysis of the ADP-ribosylation 66 factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans.' FASEB J 18(15): 1834-1850. Lin, C. Y., P. H. Huang, et al. (2000). 'ARL4, an ARF-like protein that is developmentally regulated and localized to nuclei and nucleoli.' J Biol Chem 275(48): 37815-37823. Lin, C. Y., C. C. Li, et al. (2002). 'A developmentally regulated ARF-like 5 protein (ARL5), localized to nuclei and nucleoli, interacts with heterochromatin protein 1.' J Cell Sci 115(Pt 23): 4433-4445. Lu, L., G. Tai, et al. (2004). 'Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network.' Mol Biol Cell 15(10): 4426-4443. Macia, E., F. Luton, et al. (2004). 'The GDP-bound form of Arf6 is located at the plasma membrane.' J Cell Sci 117(Pt 11): 2389-2398. Marti, A., Z. Luo, et al. (1997). 'Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-alpha activation of SAPK in melanoma cells.' J Biol Chem 272(5): 2620-2628. Meyer, S. C., D. A. Sanan, et al. (1998). 'Role of actin-binding protein in insertion of adhesion receptors into the membrane.' J Biol Chem 273(5): 3013-3020. Nakamura, F., T. M. Osborn, et al. (2007). 'Structural basis of filamin A functions.' J Cell Biol 179(5): 1011-1025. Neal, S. E., J. F. Eccleston, et al. (1988). 'Kinetic analysis of the hydrolysis of GTP by p21N-ras. The basal GTPase mechanism.' J Biol Chem 263(36): 19718-19722. Nie, Z., D. S. Hirsch, et al. (2003). 'Arf and its many interactors.' Curr Opin Cell Biol 15(4): 396-404. Nobes, C. D. and A. Hall (1995). 'Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia.' Cell 81(1): 53-62. Ohta, Y. and J. H. Hartwig (1996). 'Phosphorylation of actin-binding protein 280 by growth factors is mediated by p90 ribosomal protein S6 kinase.' J Biol Chem 271(20): 11858-11864. Ohta, Y., J. H. Hartwig, et al. (2006). 'FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling.' Nat Cell Biol 8(8): 803-814. Ohta, Y., N. Suzuki, et al. (1999). 'The small GTPase RalA targets filamin to induce filopodia.' Proc Natl Acad Sci U S A 96(5): 2122-2128. 67 Ott, I., E. G. Fischer, et al. (1998). 'A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280.' J Cell Biol 140(5): 1241-1253. Pasqualato, S., L. Renault, et al. (2002). 'Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication.' EMBO Rep 3(11): 1035-1041. Pi, M., R. F. Spurney, et al. (2002). 'Calcium-sensing receptor activation of rho involves filamin and rho-guanine nucleotide exchange factor.' Endocrinology 143(10): 3830-3838. Popowicz, G. M., M. Schleicher, et al. (2006). 'Filamins: promiscuous organizers of the cytoskeleton.' Trends Biochem Sci 31(7): 411-419. Ridley, A. J. and A. Hall (1992). 'The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.' Cell 70(3): 389-399. Ridley, A. J., H. F. Paterson, et al. (1992). 'The small GTP-binding protein rac regulates growth factor-induced membrane ruffling.' Cell 70(3): 401-410. Shen, D. W., X. J. Liang, et al. (2004). 'Identification of cytoskeletal [14C]carboplatin-binding proteins reveals reduced expression and disorganization of actin and filamin in cisplatin-resistant cell lines.' Mol Pharmacol 66(4): 789-793. Stossel, T. P., J. Condeelis, et al. (2001). 'Filamins as integrators of cell mechanics and signalling.' Nat Rev Mol Cell Biol 2(2): 138-145. Stossel, T. P. and J. H. Hartwig (2003). 'Filling gaps in signaling to actin cytoskeletal remodeling.' Dev Cell 4(4): 444-445. Takai, Y., T. Sasaki, et al. (2001). 'Small GTP-binding proteins.' Physiol Rev 81(1): 153-208. Ueda, K., Y. Ohta, et al. (2003). 'The carboxy-terminal pleckstrin homology domain of ROCK interacts with filamin-A.' Biochem Biophys Res Commun 301(4): 886-890. Vadlamudi, R. K., F. Li, et al. (2002). 'Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1.' Nat Cell Biol 4(9): 681-690. van der Flier, A. and A. Sonnenberg (2001). 'Structural and functional aspects of filamins.' Biochim Biophys Acta 1538(2-3): 99-117. Wei, S. M., C. G. Xie, et al. (2009). 'ADP-ribosylation factor like 7 (ARL7) interacts with alpha-tubulin and modulates intracellular vesicular transport.' Biochem 68 Biophys Res Commun 384(3): 352-356. Weihing, R. R. (1988). 'Actin-binding and dimerization domains of HeLa cell filamin.' Biochemistry 27(6): 1865-1869. Wennerberg, K., K. L. Rossman, et al. (2005). 'The Ras superfamily at a glance.' J Cell Sci 118(Pt 5): 843-846. White, D. J., S. Puranen, et al. (2004). 'The collagen receptor subfamily of the integrins.' Int J Biochem Cell Biol 36(8): 1405-1410. Yamazaki, D., S. Kurisu, et al. (2005). 'Regulation of cancer cell motility through actin reorganization.' Cancer Sci 96(7): 379-386. Zerial, M. and H. McBride (2001). 'Rab proteins as membrane organizers.' Nat Rev Mol Cell Biol 2(2): 107-117. Zhou, C., L. Cunningham, et al. (2006). 'Arl2 and Arl3 regulate different microtubule-dependent processes.' Mol Biol Cell 17(5): 2476-2487. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41031 | - |
| dc.description.abstract | ADP-ribosylation factor-like (ARL) 4C is a member of Ras-related small G protein family. Previous studies have shown that ARL4C plays potential roles in actin dynamics and cholesterol secretion process. However the cellular function of ARL4C remains unclear. We found that exogenous wild type ARL4C and active form ARL4C-Q72L induced filopodia and reduced stress fiber intensity in HeLa cell. Overexpression of Cdc42-T17N or Rac1-T17N did not affect ARL4C-induced filopodia. We found that the expression level of ARL4C mRNA could be detected by RT-PCR in human lung adenocarcinoma cell line (CL1-5). Wound-healing assay showed that migration ability was decreased in ARL4C-depleted CL1-5. To identify potential effectors of ARL4C, We performed yeast two-hybrid screening in human fetal brain cDNA library by using ARL4C-Q72L as bait and identified a putative effector of ARL4C, an actin-binding protein filamin A (FLNa). Yeast two‐hybrid analysis showed that the C-terminus of FLNa interacted with wild type ARL4C and ARL4C-Q72L, but not with ARL4C inactive form T27N. GST-Pull down assay and immunoprecipitation demonstrated that ARL4C interacted with the FLNa in vitro and in vivo. Immunofluorescence analysis showed that wild type ARL4C and ARL4C-Q72L colocalized with endogenous FLNa at plasma membrane and ARL4C-induced filopodia in HeLa cells. Knockdown of FLNa by siRNA did not affect the localization of ARL4C or ARL4C-induced filopodia. In the future, we will study the roles of ARL4C and FLNa in CL1-5 cell migration ability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:12:52Z (GMT). No. of bitstreams: 1 ntu-100-R97448009-1.pdf: 20217798 bytes, checksum: 6c7aae035baaa03feb82459c1fe393bd (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Table of Contents...............................................................................................................1
中文摘要...........................................................................................................................3 Abstract.............................................................................................................................4 Abbreviations....................................................................................................................6 1. Introduction 1.1. Small GTPases of Ras Superfamily........................................................................7 1.2. Arf Family of GTPases...........................................................................................8 1.3. ADP-ribosylation factor-like 4C (ARL4C)..........................................................10 1.4. Lung adenocarcinoma (CL1-0/CL1-5).................................................................11 1.5. Filamin A (FLNa).................................................................................................12 2. Material and Method 2.1. Cell Culture and Transfection...............................................................................14 2.2. Expression Plasmids.............................................................................................14 2.3. Immunostaining....................................................................................................15 2.4. SDS‐PAGE and Immunoblotting Analysis..........................................................15 2.5. Yeast Two‐Hybrid Screen and Interaction Assay................................................16 2.6. Preparation of Recombinant Proteins...................................................................17 2.7. GST Pull Down Assay..........................................................................................18 2.8. Reverse Transcription PCR (RT-PCR).................................................................18 2.9. Preparation of Yeast protein Extracts by TCA Method.......................................19 2.10. Immunoprecipitation..........................................................................................19 2.11. Small Interference RNA.....................................................................................20 2.12. Wound-Healing Assay........................................................................................20 3. Result 3.1. Subcellular localization of ARL4C or its mutants in HeLa cells.........................22 3.2. Overexpression of Cdc42-T17N or Rac1-T17N did not affect the ARL4C-induced filopodia in HeLa cells.............................................................23 3.3. Detection of endogenous ARL4C in different cell lines......................................23 3.4. The effect of ARL4C knockdown in CL1-5.........................................................24 3.5. Identification of putative ARL4C-Q72L interacting Proteins..............................26 3.6. FLNa specifically interacted with wild type ARL4C and ARL4C-Q72L............26 3.7. Identification of specific ARL4C-interacting region within FLNa......................27 3.8. FLNa could bind with ARL4C in vitro and in vivo..............................................27 3.9. Subcellular localization of endogenous FLNa in HeLa cells...............................28 3.10. Knockdown of FLNa did not affect ARL4C-induced filopodia in HeLa cells..29 4. Discussion....................................................................................................................31 5. Tables, Figures, and Supplementary Figures...............................................................36 6. Reference.....................................................................................................................64 | |
| dc.language.iso | en | |
| dc.subject | 二磷酸核醣化相似因子四C | zh_TW |
| dc.subject | 腺嘌呤核苷 | zh_TW |
| dc.subject | ARL4C | en |
| dc.title | 腺嘌呤核苷二磷酸核醣化相似因子四C (ARL4C)與其結合蛋白之特性探討 | zh_TW |
| dc.title | Characterization of ARL4C and its putative effector | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑞華,張智芬,周祖述 | |
| dc.subject.keyword | 腺嘌呤核苷,二磷酸核醣化相似因子四C, | zh_TW |
| dc.subject.keyword | ARL4C, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 19.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
