請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41000完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王重雄 | |
| dc.contributor.author | Chih-Yuan Wang | en |
| dc.contributor.author | 王智源 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:11:06Z | - |
| dc.date.available | 2010-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-25 | |
| dc.identifier.citation | 詹琇瑩。2008。分析紋白蝶和甜菜夜蛾微孢子蟲分離株之 rDNA 親緣關係。台灣大學昆蟲學系碩士論文。
Arisue, N., L. B. Sanchez, L. M. Weiss, M. Muller, and T. Hashimoto. 2002. Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians. Parasitol. Int. 51: 9-16. Baker, M. D., C. R. Vossbrinck, J. V. Maddox, and A. H. Undeen. 1994. Phylogenetic relationship among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data. J. Invertebr. Pathol. 64: 100-106. Becnel, J. J. and T. G. Andreadis. 1999. Microsporidia in insects. In The Microsporidia and Microsporidiosis (et. Wittner, M. and Weiss, L. M.), pp. 447-501. American Society for Microbiology Press, Washington, D.C. Biderre, C., A. Mathis, P. Deplazes, R. Weber, G. Metenier, and C. P. Vivares. 1999. Molecular karyotype diversity in the microsporidian Encephalitozoon cuniculi. Parasitology 118: 439-445. Brooks, W. M., J. J. Becnel, and G. G. Kenney. 1988. Establishment of Endoreticulatus n. g. for Pleistophora fidelis (Hostounsky and Weiser, 1975) (Microsporidia: Pleistophoridae) based on the ultrastructure of a microsporidium in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). J. Protozool. 35: 481-488. Cali, A., and M. E. Garhy. 1991. Ultrastructural study of the development of Pleistophora schubergi Zwölfer 1927 (Protozoa, Microsporidia) in larvae of the spruce budworm, Choristoneura fumiferana and its subsequent taxonomic change to the genus Endoreticulatus. J. Protozool. 38: 271-278. Canning, E. U., A. Curry, S. Cheney, N. J. Lafranchi-Tristem, and M. A. Haque. 1999. Vairimorpha imperfecta n. sp., a microsporidian exhibiting an abortive octosporous sporogony in Plutella xylostella L. (Lepidoptera: Yponomeutidae). Parasitology 119: 273-286. Canning, E. U., J. Lom, and I. Dykova. 1986. The Microsporidia of Vertebrates. Academic Press, London. 289 pp. Coupe, S., C. Sarfati, S. Hamane, and F. Derouin. 2005. Detection of Cryptosporidium and identification to the species level by nested PCR and restriction fragment length polymorphism. J. Clin. Microbiol. 43: 1017-1023. Curge, J. J., J. Vavra, and C. Vivares. 1980. Presence of ribosomal RNAs with prokaryotic properties in Microsporidia, eukaryotic organisms. Biol. Cell. 38: 49-51. Darwish, A., E. Weidner, and J. R. Fuxa. 1989. Vairimorpha necatrix in adipose cells of Trichoplusia ni. J. Protozool. 36: 308-311. Delarbre, S., S. Gatti, M. Scaglia, and M. Drancourt. 2001. Genetic diversity in the microsporidian Encephalitozoon hellem demonstrated by pulsed-field gel electrophoresis. J. Eukaryot. Microbiol. 48: 471-474. Didier, E. S., C. R. Vossbrinck, M. D. Baker, L. B. Rogers, D. C. Bertucci, and J. A. Shadduck. 1995. Identification and characterization of three Encephalitozoon cuniculi strains. Parasitology 111: 411-421. Edlind, T. D., J. Li, G. S. Visvesvara, M. H. Vodkin, G. L. McLaughlin, and S. K. Katiyar. 1996. Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoan. Mol. Phylogenet. Evol. 5: 359-367. Fast, N. M., and P. J. Keeling. 2001. Alpha and beta subunits of pyruvate dehydrogenase E1 from the microsporidian Nosema locustae: mitochondrion-derived carbon metabolism in microsporidia. Mol. Biochem. Parasitol. 117: 201-209. Fast, N. M., J. M. Logsdon, and W. F. Doolittle. 1999. Phylogenetic analysis of the TATA box binding protein (TBP) gene from Nosema locustae: evidence for a microsporidia-fungi relationship and spliceosomal intron losss. Mol. Biol. Evol. 16: 1415-1419. Fedorko, D. P., N. A. Nelson, and C. P. Cartwright. 1995. Identification of microsporidia in stool specimens by using PCR and restriction endonucleases. J. Clin. Microbiol. 33: 1739-1741. Fokin, S. I., G. G. Di, F. Erra, and F. Dini. 2008. Euplotespora binucleate n. gen., n. sp. (Protozoa: Microsporidia), a parasite infecting the hypotrichous ciliate Euplotes woodruffi, with observations on microsporidian infections in Ciliophora. J. Eukaryot. Microbiol. 55: 214-228. Forterre, P., and H. Philippe. 1999. Where is the root of the universal tree of life? Bioessays 21: 871-879. Franzen, C., and A. Muller. 2001. Microsporidiosis: human diseases and diagnosis. Microbes Infect. 3: 389-400. Fujiwara, T. 1980. Three microsporidians (Nosema spp.) from the silkworm, Bombyx mori. J. Seric. Sci. Jpn. 49: 229-236 (in Japanese with English summary). Fujiwara, T., K. V. V. Ananthalakshmi, and S. N. Rao. 1993. Comprehensive report on the silkworm disease control. (Bivoltine Sericulture Technology Development in India under Japan International Co-operation Agency [JICA]), Central Sericulture Research & Training Institute, Mysore, India. pp. 1-100. Gatehouse, H. S., and L. A. Malone. 1998. The ribosomal RNA gene region of Nosema apis (Microspora): DNA sequence for small and large subunit rRNA genes and evidence of a large tandem repeat unit size. J. Invertebr. Pathol. 71: 97-105. Germot, A., H. Philippe, and H. L. Guyader. 1997. Evidence for loss of mitochondria in microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol. Biol. Parasitol. 87: 159-168. Gill, E. E., and N. M. Fast. 2006. Assessing the microsporidia-fungi relationship: Combined phylogenetic analysis of eight genes. Gene 375: 103-109. Goldberg, A. V., S. Molik, A. D. Tsaousis, K. Neumann, G. Kuhnke, F. Delbac, C. P. Vivares, R. P. Hirt, R. Lill, and T. M. Embley. 2008. Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452: 624-629. Guindon S., and O. Gascuel. 2203. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. Guindon S., F. Lethiec, P. Duroux, and O. Gascuel. 2005. PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33:557-559. Haro, M., C. Aguila, S. Fenoy, and N. Henriques-Gil. 2003. Intraspecies genotype variability of the microsporidian parasite Encephalitozoon hellem. J. Clin. Microbiol. 41: 4166-4171. Hirt, R. P., B. Healey, C. R. Vossbrinck, E. U. Canning, and T. M. Embley. 1997. A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Curr. Biol. 7: 995-998. Hirt, R. P., J. M. Logsdon, JR, B. Healy, M. W. Dorey, W. F. Doolittle, and T. M. Embley. 1999. Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl. Acad. Sci. U.S.A. 96: 580-585. Hogg, J. C., J. E. Ironside, R. G. Sharpe, M. J. Hatcher, J. E. Smith, and A. M. Dunn. 2002. Infection of Gammarus duebeni populations by two vertically transmitted microsporidia; parasite detection and discrimination by PCR-RFLP. Parasitology 125: 59-63. Huang, W. F., M. Bocquet, K. C. Lee, I. H. Sung, J. H. Jiang, Y. W. Chen, and C. H. Wang. 2008. The comparison of rDNA spacer regions of Nosema ceranae isolates from different hosts and locations. J. Invertebr. Pathol. 97: 9-13. Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. Iguchi, T., H. Iwano, Y. Hatakeyama, Y. Kawakami, K. Onoda, S. Hayasaka, T. Inoue, and R. Ishihara. 1997. Sporogony of a microsporidium, Nosema sp. NIS-M11 (Microspora: Nosematidae) in larvae of the silkworm, Bombyx mori raised under two distinct levels of temperature. J. Seric. Sci. Jpn. 66: 445-452 (in Japanese with English summary). Ishihara, R., and Y. Hayashi. 1968. Some properties of ribosomes from the sporoplasm of Nosema bombycis. J. Invertebr. Pathol. 11: 377-385. James, T. Y., F. Kauff, C. L. Schoch, P. B. Matheny, V. Hofsteter, et al., (70 authers). 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 19: 818-822. Johny, S., S. Kanqinakudru, M. C. Muraliranqan, and J. Naqaraju. 2006. Morphological and molecular characterization of a new microsporidian (Protozoa: Microsporidia) isolated from Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Parasitology 132: 803-814. Jouvenaz, D. P., and E. A. Ellis. 1986. Vairimorpha invictae n. sp. (Microspora: Microsporida), a parasite of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Protozool. 33: 457-461. Kamaishi, T., T. Hashimoto, Y. Nakamura, Y. Masuda, F. Nakamura, K. Okamoto, M. Shimizu, and M. Hasegawa. 1996a. Complete nucleotide sequences of the genes encoding translation elongation factors 1 alpha and 2 from a microsporidian parasite, Glugea plecoglossi: implications for the deepest branching of eukaryotes. J. Biochem. 120: 1095-1103. Kamaishi, T., T. Hashimoto, Y. Nakamura, F. Nakamura, S. Murata, N. Okada, K. Okamoto, M. Shimizu, and M. Hasegawa. 1996b. Protein phylogeny of translation elongation factors EF-1α suggests microsporidians are extremely ancient eukaryotes. J. Mol. Evol. 42: 257-263. Kawarabata, T. 2003. Biology of microsporidians infecting the silkworm, Bombyx mori, in Japan. J. Insect Biotechnol. Sericol. 72: 1-32. Keeling, P. J. 2003. Congruent evidence from a α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet. Bio. 38: 298-309. Keeling, P. J., and W. F. Doolittle. 1996. A non-canonical genetic code in an early diverging protist lineage. EMBO J. 15: 2285-2290. Keeling, P. J., and N. M. Fast. 2002. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56: 93-116. Keeling, P. J., M. A. Luker, and J. D. Palmer. 2000. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol. Biol. Evol. 17: 23-31. Kellen, W. R., and J. E. Lindegren. 1968. Biology of Nosema plodiae sp. n., a microsporidian pathogen of the Indian-meal moth, Plodia interpuntella (Hübner), (Lepidoptera: Phycitidae). J. Invertebr. Pathol. 11: 104-111. Kellen, W. R., and J. E. Lindegren. 1969. Host-pathogen relationships between two previously undescribed microsporidia from the Indian-meal moth, Plodia interpuntella (Hübner), (Lepidoptera: Phycitidae). J. Invertebr. Pathol. 14: 328-335. Ku, C. T., C. H. Wang, Y. C. Tsai, C. C. Tzeng, and C. H. Wang. 2007. Phylogenetic analysis of two putative Nosema isolates from cruciferous lepidopteran pests in Taiwan. J. Invertebr. Pathol. 95: 71-76. Leiro, J., M. I. G. Siso, A. Parama, F. M. Ubeira, and M. L. Sanmartin. 2000. RFLP analysis of PCR-amplified small subunit ribosomal DNA of three fish microsporidian species. Parasitology 120: 113-119. Liguory, O., F. David, C. Sarfati, F. Derouin, and J. M. Molina. 1998. Determination of types of Enterocytozoon bieneusi strains isolated from patients with intestinal microsporidiosis. J. Clin. Microbiol. 36: 1882-1885. Maddox, J. V., M. D. Baker, M. R. Jeffords, M. Kuras, A. Linde, L. F. Solter, M. L. McManus, J. Vavra, and C. R. Vossbrinck. 1999. Nosema portugal n. sp., isolated from gypsy moth (Lymantria dispar L.) collected in Portugal. J. Invertebr. Pathol. 73: 1-14. Malone, L. A., and C. A. McIvor. 1993. Pulsed-field gel electrophoresis of DNA from four microsporidian isolates. J. Invertebr. Pathol. 61: 203-205. McGourty, K. R., A. P. Kinziger, G. L. Hendrickson, G. H. Goldsmith, G. Casal, and C. Azevedo. 2007. A new microsporidian infecting the musculature of the endangered tidewater goby (Gobbidae). J. Parasitol. 93: 655-660. McManus, M. L., and L. F. Solter. 2003. Microsporidian pathogens in European gypsy moth populations. Proceedings: Ecology, survey, and management of forest insects. USDA Forest Service, Northeast Research Station Gen. Tech. Rep. NE-311: 44-51. Mercer, C. F., and P. J. Wigley. 1987. A microsporidian pathogen of the poroporo stem borer, Sceliodes cordalis (Dbld) (Lepidoptera: Pyralidae). J. Invertebr. Pathol. 49: 93-101. Mitchell, M. J., and A. Cali. 1993. Ultrastructural study of the development of Vairimorpha necatrix (Kramer, 1965) (Protozoa, Microsporida) in larvae of the corn earworm, Heliothis zea (Boddie) (Lepidoptera, Noctuidae) with emphasis on sporogony. J. Eukaryot. Microbiol. 40: 701-710. Moore, C. B., and W. M. Brooks. 1992. An ultrastructural study of Vairimorpha necatrix (Microspora, Microsporida) with particular reference to episporontal inclusions during octosporogony. J. Protozool. 39: 392-398. Moore, C. B., and W. M. Brooks. 1994. An ultrastructural study of the episporontal inclusions produced during octosporogony by five species/isolates of Vairimorpha (Microspora: Microsporida). J. Invertebr. Pathol. 63: 197-206. Moura, H., M. Ospina, A. R. Woolfitt, J. R. Barr, and G. S. Visvesvara. 2003. Analysis of four human microsporidian isolates by MALDI-TOF mass spectrometry. J. Eukaryot. Microbiol. 50: 156-163. Muller, A., K. Stellermann, P. Hartmann, M. Schrappe, G. Fatkenhruer, B. Salzberger, V. Diehl, and C. Franzen. 1999. A powerful DNA extraction method and PCR for detection of microsporidia in clinical stool specimens. Clin. Diagn. Lab. Immunol. 6: 243-246. Nicholas, K. B., H. B. Nicholas, Jr., and D. W. Deerfield. 1997. GeneDoc: Analysis and Visualization of Genetic Variation, EMBNEW. NEWS 4: 14. Peyretaillade, E., V. Broussolle, P. Peyret, G. Metenier, M. Gouy, and C. P. Vivares. 1998. Microsporidia, amitochondrial protists, possess a 70-kDa heat shock protein gene of mitochondrial evolutionary origin. Mol. Biol. Evol. 15: 683-689. Paillot, A. 1918. Deux Microsporidies nouvelles parasites des chenilles de Pieris brassicae. C. R. Soc. Biol. 81: 66-68. Pilley, B. M. 1976. A new genus, Vairimorpha (Protozoa: Microsporida), for Nosema necatrix Kramer 1965: pathogenicity and life cycle on Spodoptera exempta (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 28: 177-183. Rao, S. N., B. S. Nath, G. Bhuvaneswari, and S. R. Urs. 2007. Genetic diversity and phylogenetic relationships among microsporidia infecting the silkworm, Bombyx mori, using random amplification of polymorphic DNA: Morphological and ultrastructural characterization. J. Invertebr. Pathol. 96: 193-204. Rao, S. N., B. S. Nath, and B. Saratchandra. 2005. Characterization and phylogenetic relationships among microsporidia infecting silkworm, Bombyx mori, using inter simple sequence repeat (ISSR) and small subunit rRNA (SSU-rRNA) sequence analysis. Genome 48: 355-366. Rönnebäumer, K., U. Gross, and W. Bohne. 2008. The nascent parasitophorous vacuole membrane of Encephalitozoon cuniculi is formed by host cell lipids and contains pores which allow nutrient uptake. Eukaryot. Cell 7: 1001-1008. Sato, R., and H. Watanabe. 1985. Sporogonial sequence in microsporideae pathogenic to the silkworm, Bombyx mori. J. Seric. Sci. Jpn. 55: 10-16 (in Japanese with English summary). Sato, R., M. Kobayashi, and H. Watanabe. 1982. Internal ultrastructure of spores of microsporidian isolated from the silkworm, Bombyx mori. J. Invertebr. Pathol. 40: 260-265. Scobottka, I., H. Albrecht, G. S. Visvesvara, N. J. Pieniazek, P. Deplazes, D. A. Schwartz, R. Laufs, and H. A. Elsner. 1999. Inter- and intra-species karyotype variations among microsporidia of the genus Encephalitozoon as determined by pulsed-field gel electrophoresis. Scand J. Infect. Dis. 31: 555-558. Slamovits C. H., B. A. Williams, and P. J. Keeling. 2004. Transfer of Nosema locustae (Microsporidia) to Antonospora locustae n. comb. based on molecular and ultrastructural data. J. Eukaryot. Microbiol. 51: 207-213. Sokolova, Y. Y., C. E. Lange, and J. R. Fuxa. 2007. Establishment of Liebermannia dichroplusae n. comb. on the basis of molecular characterization of Perezia dichroplusae Lange, 1987 (Microsporidia). J. Eukaryot. Microbiol. 54: 223-230. Solter, L. F., D. K. Pilarska, and C. F. Vossbrinck. 2000. Host specificity of microsporidia pathogenic to forest Lepidoptera. Biol. Control 19: 48-56. Solter, L. F., J. V. Maddox, and M. L. McManus. 1997. Host specificity of microsporidia (Protista: Microspora) from European populations of Lymantria dispar (Lepidoptera: Lymantriidae) to indigenous North American Lepidoptera. J. Invertebr. Pathol. 69: 135-150. Sprague, V., J. J. Becnel, and E. I. Hazard. 1992. Taxonomy of phylum microspora. Crit. Rev. Microbiol. 18: 285-395. Streett, D. A., and J. D. Briggs. 1982. An evaluation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the identification of microsporidia. J. Invertebr. Pathol. 40: 159-165. Sulaiman, I. M., O. Matos, M. L. Lobo, and L. Xiao. 2003. Identification of a new microsporidian parasite related to Vittaforma corneae in HIV-positive and HIV-negative patients from Portugal. J. Eukaryot. Microbiol. 50: 586-590. Swofford, D. L. 2003. PAUP*, Phylogenetic analysis using parasimony (* and other methods), Sinauer Associates, Sunderland, MA. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. Tsai, S. J., W. F. Huang, and C. H. Wang. 2005. Complete sequence and gene organization of Nosema spodopterae rRNA gene. J. Eukaryot. Microbiol. 52: 52-54. Tsai, S. J., C. F. Lo, Y. Soichi, and C. H. Wang. 2003. The characterization of microsporidian isolates (Nosematidae: Nosema) from five important lepidopteran pests in Taiwan. J. Invertebr. Pathol. 83: 51-59. Tsaousis, A. D., E. R. S. Kunji, A. V. Goldberg, J. M. Lucocq, R. P. Hirt, and T. M. Embley. 2008. A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453: 553-557. Undeen, A. H., and A. F. Cockburn. 1989. The extraction of DNA from microsporidia spores. J. Invertebr. Pathol. 54: 132–133. Van de Peer, Y., A. B. Ali, and A. R. Meyer. 2000. Microsporidia: accumulating molecular evidence that a group of amitochondriate are suspectedly primitive eukaryotes are just curious fungi. Gene 246: 1-8. Vavra, J., M. Hylis, C. R. Vossbrinck, D. K. Pilarska, A. Linde, J. Weiser, M. L. Mcmanus, G. Hoch, and L. F. Solter. 2006. Vairimorpha disparis n. comb. (Microsporidia: Burenellidae): A redescription and taxonomic revision of Thelohania disparis Timofejeva 1956, a microsporidian parasite of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae). J. Eukaryot. Microbiol. 53: 292-304. Vossbrinck, C. R., M. D. Baker, E. S. Didier, B. A. Debrunner-Vossbrinck, and J. A. Shadduck. 1993. Ribosomal DNA sequences of Encephalitozoon hellem and Encephalitozoon cuniculi: species identification and phylogenetic construction. J. Eukaryot. Microbiol. 40: 354-362. Vossbrinck, C. R., J. V. Maddox, S. Friedman, B. A. Debrunner-Vossbrinck, and C. R. Woese. 1987. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326: 411-414. Wang, C. Y., L. F. Solter, W. H. T’sui, and C. H. Wang. 2005. An Endoreticulatus species from Ocinara lida (Lepidoptera: Bombycidae) in Taiwan. J. Invertebr. Pathol. 89: 123-135. Weiser J., and K. Purrini. 1985. Light- and electron-microscopic studies on the microsporidian Vairimorpha ephestiae (Mattes) (Protozoa, Microsporidia) in the meal moth Ephestia kühniella. Arch. Protistenk. 130: 179-189. Williams, B. A., I. Haferkamp, and P. J. Keeling. 2008. An ADP/ATP-specific mitochondrial carrier protein in the microsporidian Antonospora locustae. J. Mol. Biol. 375: 1249-1257. Williams, B. A., R. P. Hirt, J. M. Lucocq, and T. M. Embley. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418: 865-869. Wittner, M., and L. M. Weiss. 1999. The Microsporidia and Microsporidiosis. American Society for Microbiology Press, Washington, D.C. Xia, X., and Z. Xie. 2001. DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92: 371-373. Xiao, L., L. Li, G. S. Visvesvara, H. Moura, E. S. Didier, and A. A. Lal. 2001. Genotyping Encephalitozoon cuniculi by multilocus analyses of genes with repetitive sequences. J. Clin. Microbiol. 39: 2248-2253. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41000 | - |
| dc.description.abstract | 從台灣榕樹害蟲-大黑點白蠶蛾 (Ocinara lida Moore) 分離出新微孢子:大黑點白蠶蛾變形微孢子 (Vairimorpha ocinarae n. sp.)。此微孢子會造成幼蟲之系統性感染,主要感染位置為馬氏管及中腸肌肉,感染的幼蟲其脂肪體遭受到嚴重地萎縮。此微孢子之孢子有二型:雙核孢子具有 11 至 13 圈極管;單核孢子常呈八孢子聚集,具有 12 圈極絲。電子緻密之上孢子內涵體充斥上孢子腔,此特徵與來自家蠶與火蟻之微孢子 (分別為 Vairimorpha sp. NIS-M11 及 V. invictae) 類似,但有異於其它變形微孢子種類。根據 SSUrDNA 序列,此微孢子與分離自家蠶之 Vairimorpha sp. NIS-M11 及 Vairimorpha sp. NIK-3h 關係密切。形態和遺傳特性上,此微孢子應屬變形微孢子屬之新種。變形微孢子種群 (Vairimorpha complex) 內之種類及分離株,利用核糖體 RNA 基因 (Small subunit ribosomal DNA, SSUrDNA 及 Large subunit ribosomal DNA)、內轉錄區間各區段 (HG4F-HG4R 區段、ITS+580R 區段及 580R 區段)、特定蛋白質之基因 (alpha-tubulin、beta-tubulin 及 hsp70) 與多基因統合序列進行親緣關係之分析。變形微孢子種群之種和分離株可分成四群,並據以評估各群間及群內之相關性。基於基因統合序列之分析及 SSUrDNA 之 PCR-RFLP,發現第三群與第四群關係較第二群密切,而疏於第一群。本研究顯示所有分析的基因和區段之親緣分析及核苷酸序列相似度的分析,內轉錄區間 (Internal transcribed spacer,ITS) 是最適合用於群間及群內的鑑識區段,其次為蛋白質基因。在內質網微孢子種群中,基於 SSUrDNA 序列分析可分成兩群,群間及群內相似度皆為 98~99%。在分群分析上,仍需要有較多的其他基因序列才能證實群間與群內的相關性。 | zh_TW |
| dc.description.abstract | A new microsporidium, Vairimorpha ocinarae n. sp., was isolated from the moribund larvae of Ocinara lida Moore (Lepidoptera: Bombycidae), a pest of Ficus spp. in Taiwan. This isolate causes a systemic infection of O. lida larvae. The midgut epithelium, midgut muscle tissues, and Malpighian tubules were the main target tissues for this isolate, and the atrophied fatty body was found in the seriously infected larvae. Two types of spores were found: binuclear spores possessed 11 to 13 polar-tube coils; mononuclear spores possessed 12 coils polar tube and aggregated usually to form octospores. Electron-dense episporontal inclusions filled in the episporontal space, and this structure was similar to that of Vairimorpha sp. NIS-M11 isolated from Bombyx mori and V. invictae isolated from Solenopsis invicta, but different from other Vairimorpha species. Based on the phylogenetic analysis of SSUrDNA sequences, this isolate is closely related to Vairimorpha sp. NIS-M11 and Vairimorpha sp. NIK-3h. Morphological and genetic characters showed that this isolate is a new species placed in the genus Vairimorpha. The species and isolates in the Vairimorpha complex were analyzed phylogenetically based on the sequences of rDNA (SSUrDNA and LSUrDNA), ITS (HG4F-HG4R region, ITS+580R region, and 580R region), protein coding genes (alpha-tubulin, beta-tubulin and hsp70 genes), and total sequenced genes. The four groups were identified and the relationships of inter-groups and intra-groups were evaluated. Based on phylogenetic analyses of total sequence genes and RFLP-PCR of SSUrDNA, the Group 3 and 4 are closer to Group 2 than Group 1. The results of the phylogenetic analyses based on the sequences of each examined gene or region were evaluated for the group identification. The internal transcribed spacer (ITS) is the best candidate for identification of inter-groups and intra-groups. The second candidate is protein coding genes. In the Endoreticulatus complex, there were two groups formed based on the phylogenetic analyses of SSUrDNA. The identities of inter-groups and intra-groups were both 98~99%. It still needs more gene sequence evidences to confirm the relationships between intra-groups and inter-groups. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:11:06Z (GMT). No. of bitstreams: 1 ntu-97-D92632004-1.pdf: 1836144 bytes, checksum: f83763f23a60d1fe9755b791b4357b74 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………………………………i
致謝……………………………………………………………………………………ii 中文摘要……………………………………………………………………………iii 英文摘要……………………………………………………………………………iv 名詞對照表……………………………………………………………………………v 第一章 前言…………………………………………………………………………1 第二章 前人研究……………………………………………………………………3 第三章 材料與方法…………………………………………………………………9 一、供試昆蟲及微孢子種類……………………………………………………9 二、微孢子之純化………………………………………………………………9 三、成熟孢子大小之量測………………………………………………………9 四、微孢子 DNA 之萃取……………………………………………….………..9 五、各種微孢子基因之選殖……………………………………………………..10 六、親緣關係之分析……………………………………………………………..10 七、電子顯微鏡法………………………………………………………………..11 八、PCR-RFLP 之分析………………………………………………….………..12 第四章 結果………………………………………………………………………….13 一、病徵…………………………………………………………………………..13 二、SSUrDNA 親緣關係分析……………………………………………………13 三、形態特徵……………………………………………………………………..13 四、rDNA 之親緣關係分析……………………………………………………..15 五、變異性區段…………………………………………………………………..16 六、特定蛋白質之基因…………………………………………………………..17 七、多基因統合序列親緣關係分析……………………………………………..19 八、RFLP-PCR 圖譜分析……………………………………………………….19 九、內質網微孢子種群之分析…………………………………….…………….20 第五章 討論……………………………………………………………….…………21 第六章 結論……………………………………………………….…………………29 第七章 參考文獻……………………………………………………………………30 附錄一、位於變形微孢子種群中,用於親緣關係分析的微孢子 SSUrDNA 序列…………………………………………………..………………………..75 附錄二、位於內質網微孢子種群中,SSUrDNA 親緣關係分析之微孢子種類…………………………………………………..………………………..76 附錄三、增幅不同 rDNA 區段及不同基因之引子對………..………………....….77 附錄四、增幅不同 rDNA 區段及不同基因之 PCR 程序………………………...78 附錄五、昆蟲微孢子微粒子屬及變形微孢子屬種類之 NCBI GenBank 號碼…………………………………………….………………………….…..79 附錄六、依不同計算方法構築之 SSUrDNA 親緣關係樹………………………...80 附錄七、依不同計算方法構築之 LSUrDNA 親緣關係樹………………...………81 附錄八、依不同計算方法構築 HG4F-HG4R 區段之親緣關係樹……………..….82 附錄九、依不同計算方法構築 ITS+580R 區段之親緣關係樹……………………83 附錄十、依不同計算方法構築 580R 區段之親緣關係樹…………………………84 附錄十一、依不同計算方法構築 alpha-tubulin (核苷酸) 之親緣關係樹………...85 附錄十二、依不同計算方法構築 ALPHA-TUBULIN (胺基酸) 之親緣關係樹………………………………………………………………………….86 附錄十三、依不同計算方法構築 beta-tubuline (核苷酸) 之親緣關係樹………….87 附錄十四、依不同計算方法構築 BETA-TUBULIN (胺基酸) 之親緣關係樹…….88 附錄十五、依不同計算方法構築 hsp70 (核苷酸) 之親緣關係樹………………….89 附錄十六、依不同計算方法構築 HSP70 (胺基酸) 之親緣關係樹…………………90 附錄十七、在內質網微孢子種群中,依不同計算方法構築 SSUrDNA 之親緣關係樹……………………………………………………………………….…91 表次 表一、變形微孢子種群之 SSUrDNA 序列相似度…………………………….……39 表二、變形微孢子種群之分群間 SSUrDNA 序列相似度 (%)………………….…40 表三、分群微孢子 SSUrDNA (A) 及 LSUrDNA (B) 基因之序列相似度 (%)…..41 表四、分群微孢子變異區之序列相似度 (%)………………………………………..42 表五、分群微孢子特定蛋白質基因之序列相似度 (%)……………………………..43 表六、分群微孢子多基因統合基因之序列相似度 (%)……………………..………44 表七、內質網微孢子種群之SSUrDNA 序列相似度 (%)…………………..………45 表八、不同 rDNA 區域及不同基因序列之群間及群內相似度 (%)………..……..46 表九、區別 Endoreticulatus sp. Taiwan 及 Vairimorpha ocinarae 之特徵…..…….47 表十、變形微孢子屬種類的雙核孢子形態資料………………………………..……48 表十一、變形微孢子屬種類的單核八孢子形態資料…………………………..……49 表十二、變形微孢子屬種類的上孢子內涵體形態資料………………………..……50 圖次 圖一、不同 rDNA 區段用於分析種及分離株間相關性…………………………….51 圖二、受 Vairimorpha oicnarae 感染的大黑點白蠶蛾幼蟲之病徵……………..…52 圖三、位於微粒子/變形微孢子種群中,昆蟲微孢子 SSUrDNA 序列之親緣關係………………………………………………………………………...……..53 圖四、Vairimorpha ocinarae 之光學照片……………………………………...…….54 圖五、孢子生成週期之 Vairimorpha ocinarae 電顯圖………………………..……55 圖六、早期八孢子孢子生成週期之 Vairimorpha ocinarae 電顯圖…………..……57 圖七、Vairimorpha ocinarae 之原生質團………………………………………..…..59 圖八、中期及晚期八孢子孢子生成週期之Vairimorpha ocinarae電顯圖……..…..61 圖九、微孢子 SSUrDNA 及 LSUrDNA 於變形微孢子種群中之親緣關係圖……64 圖十、微孢子 rDNA 變異性區段之親緣關係圖…………………………………….65 圖十一、變形微孢子種群的各群種類及分離株之 ITS 序列排列圖……………….67 圖十二、變形微孢子種群的微孢子 alpha-tubulin 之親緣關係圖………………….68 圖十三、變形微孢子種群的微孢子 beta-tubulin 之親緣關係圖………………..…69 圖十四、變形微孢子種群的微孢子 hsp70 之親緣關係圖………………………….70 圖十五、變形微孢子種群的微孢子多基因統合序列之親緣關係圖………………..71 圖十六、限制酵素 ApoI 分解各分群種類 SSUrDNA 形成之 PCR-RFLP 圖譜………………………………………………………………………….…73 圖十七、內質網微孢子種群的微孢子 SSUrDNA 基因之親緣關係圖………..…..74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 大黑點白蠶蛾變形微孢子 | zh_TW |
| dc.subject | 大黑點白蠶蛾 | zh_TW |
| dc.subject | 親緣關係分析 | zh_TW |
| dc.subject | 超微構造 | zh_TW |
| dc.subject | 電子緻密顆粒 | zh_TW |
| dc.subject | 內質網微孢子種群 | zh_TW |
| dc.subject | 變形微孢子種群 | zh_TW |
| dc.subject | Vairimorpha complex | en |
| dc.subject | Vairimorpha ocinarae n. sp. | en |
| dc.subject | Ocinara lida | en |
| dc.subject | phylogenetic analysis | en |
| dc.subject | ultrastructure | en |
| dc.subject | electron-dense granule | en |
| dc.subject | Endoreticulatus complex | en |
| dc.title | 大黑點白蠶蛾微孢子之分類地位及親緣關係之分析 | zh_TW |
| dc.title | The taxonomy and phylogenetic analyses of microsporidian species isolated from Ocinara lida Moore (Lepidoptera: Bombycidae) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 石正人,羅竹芳,張雲祥,高穗生,周信佑,侯豐男 | |
| dc.subject.keyword | 大黑點白蠶蛾變形微孢子,大黑點白蠶蛾,親緣關係分析,超微構造,電子緻密顆粒,內質網微孢子種群,變形微孢子種群, | zh_TW |
| dc.subject.keyword | Vairimorpha ocinarae n. sp.,Ocinara lida,phylogenetic analysis,ultrastructure,electron-dense granule,Endoreticulatus complex,Vairimorpha complex, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
