Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4098
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王俊能(Chun-Neng Wang)
dc.contributor.authorYu-Ling Hungen
dc.contributor.author洪育翎zh_TW
dc.date.accessioned2021-05-13T09:20:42Z-
dc.date.available2016-11-02
dc.date.available2021-05-13T09:20:42Z-
dc.date.copyright2016-11-02
dc.date.issued2016
dc.date.submitted2016-08-19
dc.identifier.citation1. Altpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., ... and Fauquet, C. (2005). Particle bombardment and the genetic enhancement of crops: myths and realities. Molecular Breeding, 15, 305-327.
2. Altpeter, F., Vasil, V., Srivastava, V., Stöger, E., and Vasil, I. K. (1996). Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Reports 16, 12-17.
3. Amoah, B. K., Wu, H., Sparks, C., and Jones, H. D. (2001). Factors influencing Agrobacterium‐mediated transient expression of uidA in wheat inflorescence tissue. Journal of Experimental Botany 52, 1135-1142.
4. An, G. (1985). High efficiency transformation of cultured tobacco cells. Plant Physiology 79, 568-570.
5. An, G., Watson, B. D., and Chiang, C. C. (1986). Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiology 81, 301-305.
6. Barik, D. P., Mohapatra, U., and Chand, P. K. (2005). Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Reports 24, 523-531.
7. Baron, C., Domke, N., Beinhofer, M., and Hapfelmeier, S. (2001). Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. Journal of Bacteriology 183, 6852-6861.
8. Barth, S., Geier, T., Eimert, K., Watillon, B., Sangwan, R. S., and Gleissberg, S. (2009). KNOX overexpression in transgenic Kohleria (Gesneriaceae) prolongs the activity of proximal leaf blastozones and drastically alters segment fate. Planta 230, 1081-1091.
9. Birch, R. G. (1997). Plant transformation: problems and strategies for practical application. Annual Review of Plant Biology 48, 297-326.
10. Bower, R., and Birch, R.G. (1992). Transgenic sugarcane plants via microprojectile bombardment. The Plant Journal 2, 409-416.
11. Busch, A., and Zachgo, S. (2009). Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation. BioEssays 31, 1181-1190.
12. Byrne, M. C., McDonnell, R. E., Wright, M. S., and Carnes, M. G. (1987). Strain and cultivar specificity in the Agrobacterium-soybean interaction. Plant Cell, Tissue and Organ Culture 8, 3-15.
13. Cervera, M., Pina, J. A., Juarez, J., Navarro, L., and Pena, L. (1998). Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Reports 18, 271-278.
14. Chae, S. C., Kim, H. H., and Park, S. U. (2012). Ethylene inhibitors enhance shoot organogenesis of gloxinia (Sinningia speciosa). The Scientific World Journal 2012, 859381.
15. Chateau, S., Sangwan, R. S., and Sangwan‐Norreel, B. S. (2000). Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciensmediated gene transfer: role of phytohormones. Journal of Experimental Botany 51, 1961-1968.
16. Cheng, M., Fry, J. E., Pang, S., Zhou, H., Hironaka, C. M., Duncan, D. R., Conner, T. W., and Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology 115, 971-980.
17. Cheng, M., Hu, T., Layton, J., Liu, C. N., and Fry, J. E. (2003). Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cellular Developmental Biology - Plant 39, 595-604.
18. Cheng, M., Lowe, B. A., Spencer, T. M., Ye, X., and Armstrong, C. L. (2004). Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular Developmental Biology - Plant 40, 31-45.
19. Christenhusz, M. J. M., and Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261, 201-217.
20. Christou, P. (1992). Genetic transformation of crop plants using microprojectile bombardment. The Plant Journal 2, 275-281.
21. Clough, S. J., and Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743.
22. Danilova, S. A., and Dolgikh, Y. I. (2004). The stimulatory effect of the antibiotic cefotaxime on plant regeneration in maize tissue culture. Russian Journal of Plant Physiology 51, 559-562.
23. de Oliveira, M. L. P., Febres, V. J., Costa, M. G., Moore, G. A., and Otoni, W. C. (2009). High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Reports 28, 387-395.
24. Delbreil, B., Guerche, P., and Jullien, M. (1993). Agrobacterium-mediated transformation of Asparagus officinalis L. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Reports 12, 129-132.
25. Dillen, W., Clercq, J., Kapila, J., Zambre, M., Montagu, M., and Angenon, G. (1997). The effect of temperature on Agrobacterium tumefaciens‐mediated gene transfer to plants. The Plant Journal 12, 1459-1463.
26. Fiola, J. A., Hassan, M. A., Swartz, H. J., Bors, R. H., and McNicols, R. (1990). Effect of thidiazuron, light fluence rates and kanamycin on in vitro shoot organogenesis from excised Rubus cotyledons and leaves. Plant Cell, Tissue and Organ Culture 20, 223-228.
27. Frame, B. R., Zhang, H., Cocciolone, S. M., Sidorenko, L. V., Dietrich, C. R., Pegg, S. E., Zhen, S., Schnable, P. S., and Wang, K. (2000). Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. . In Vitro Cellular Developmental Biology-Plant 36, 21-29.
28. Geier, T., and Sangwan, R. S. (1996). Histology and chimeral segregation reveal cell-specific differences in the competence for shoot regeneration and Agrobacterium-mediated transformation in Kohleria internode explants. Plant Cell Reports 15, 386-390.
29. Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology 20, 1203-1207.
30. Hiei, Y., Komari, T., and Kubo, T. (1997). Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology 35, 205-218.
31. Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., and Schilperoort, R. A. (1983). A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179-180.
32. Huang, X. F., Nguyen-Quoc, B., Séguin, A., and Yelle, S. (1998). Tissue-specificity of maize sucrose synthase gene promoters in maize tissues after particle bombardment. Euphytica 103, 17-21.
33. Javier, P. R., Guy, H. E., Luis, C., Rodolphe, S., and Jes´us, C. (2001). Enhanced regeneration of tomato and pepper seedling explants for Agrobacterium-mediated transformation. Plant Cell, Tissue and Organ Culture 67, 173-180.
34. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987). GUS fusions: betaglucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6, 3901-3907.
35. Jian, B., Hou, W., Wu, C., Liu, B., Liu, W., Song, S., Bi, Y., and Han, T. (2009). Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus
corniculatus plants: a valuable tool for functional genomics. BMC Plant Biology 9, 78.
36. Jin, S., Zhang, X., Nie, Y., Guo, X., and Huang, C. (2005). Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture 81, 229-237.
37. Kim, K. H., Lee, Y. H., Kim, D., Park, Y. H., Lee, J. Y., Hwang, Y. S., and Kim, Y. H. (2004). Agrobacterium-mediated genetic transformation of Perilla frutescens. Plant Cell Reports 23, 386-390.
38. Komari, T. (1989). Transformation of callus cultures of nine plant species mediated by Agrobacterium. Plant Science 60, 223-229.
39. Kondo, T., Hasegawa, H., and Suzuki, M. (2000). Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant cell reports 19, 989-993.
40. Kuo, W.H. (2014). Ecotopic expression of SsCYC in Nicotiana benthamiana and optimizing regeneration system of Sinningia speciosa. Master thesis. National Taiwan University.
41. Kushikawa, S., Hoshino, Y., and Mii, M. (2001). Agrobacterium-mediated transformation of Saintpaulia ionantha Wendl. Plant Science 161, 953-960.
42. Li, D. D., Shi, W., and Deng, X. X. (2003). Factors influencing Agrobacteriummediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene. Tree Physiology 23, 1209-1215.
43. Li, Q., Deng, M., Zhang, J., Zhao, W., Song, Y., Li, Q., and Huang, Q. (2013a). Shoot organogenesis and plant regeneration from leaf explants of Lysionotus serratus D. Don. The Scientific World Journal 2013, 280384.
44. Li, X., Bian, H., Song, D., Ma, S., Han, N., Wang, J., and Zhu, M. (2013b). Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Annals of Botany 111, 791-799.
45. Ling, H. Q., Kriseleit, D., and Ganal, M. W. (1998). Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Reports 17, 843-847.
46. Liu, B. L., Yang, X., Liu, J., Dong, Y., and Wang, Y. Z. (2014). Characterization, efficient transformation and regeneration of Chirita pumila (Gesneriaceae), a potential evo-devo model plant. Plant Cell, Tissue and Organ Culture 118, 357-371.
47. Lowe, J. M., Davey, M. R., Power, J. B., and Blundy, K. S. (1993). A study of some factors affecting Agrobacterium transformation and plant regeneration of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell, Tissue and Organ Culture 33, 171-180.
48. Mathias, R. J., and Mukasa, C. (1987). The effect of cefotaxime on the growth and regeneration of callus from four varieties of barley (Hordeum vulgare L.). Plant Cell Reports 6, 454-457.
49. Mathias, R. J., and Boyd, L. A. (1986). Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L em. thell). Plant Science 46, 217-223.
50. McCormick, S., Yamaguchi, J., and Twell, D. (1991). Deletion analysis of pollenexpressed promoters. In Vitro Cellular Developmental Biology-Plant 27, 15-20.
51. McHughen, A., Jordan, M., and Feist, G. (1989). A preculture period prior to Agrobacterium inoculation increases production of transgenic plants. Journal of Plant Physiology 135, 245-248.
52. Mercuri, A., De Benedetti, L., Burchi, G., and Schiva, T. (2000). Agrobacteriummediated transformation of African violet. Plant Cell, Tissue and Organ Culture 60, 39-46.
53. Mithila, J., Hall, J. C., Victor, J. M., and Saxena, P. K. (2003). Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl). Plant Cell Reports 21, 408-414.
54. Mondal, T., Bhattacharya, A., Ahuja, P., and Chand, P. (2001). Transgenic tea [ Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium -mediated transformation of somatic embryos. Plant Cell Reports 20, 712-720.
55. Morikawa, H., Iida, A., and Yamada, Y. (1989). Transient expression of foreign genes in plant cells and tissues obtained by a simple biolistic device (particle-gun). Applied Microbiology and Biotechnology 31, 320-322.
56. Opabode, J. T. (2006). Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnology and Molecular Biology Reviews 1, 12-20.
57. Owens, L. D., and Cress, D. E. (1985). Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids. Plant physiology 77, 8794.
58. Pang, J. L., Wang, L. L., Hu, J. Q., Xiang, T. H., and Liang, H. M. (2006). Synergistic promotion of gibberellin and cytokinin on direct regeneration of floral buds from in vitro cultures of sepal segments in Sinningia speciosa hiern. In Vitro Cellular Developmental Biology - Plant 42, 450-454.
59. Park, E. H., Bae, H., Park, W. T., Kim, Y. B., Chae, S. C., and Park, S. U. (2012). Improved shoot organogenesis of gloxinia (Sinningia speciosa) using silver nitrate and putrescine treatment. Plant Omics 5, 6-9.
60. Patton, D. A., and Meinke, D. W. (1988). High-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Reports 7, 233-237.
61. Pawlowski, W. P., and Somers, D. A. (1996). Transgene inheritance in plants genetically engineered by microprojectile bombardment. Molecular Biotechnology 6, 17-30.
62. Peña, L., Cervera, M., Juárez, J., Navarro, A., Pina, J. A., Durán-Vila, N., and Navarro, L. (1995). Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Reports 14, 616-619.
63. Rao, A. M., Sree, K. P., and Kishor, P. K. (1995). Enhanced plant regeneration in grain and sweet sorghum by asparagine, proline and cefotaxime. Plant Cell Reports 15, 72-75.
64. Renate, S., and Lothar, W. (1988). High efficiency Agrobacterium tumefaciensmediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Reports 7, 583-586.
65. Rogers, S.O., and Bendich, A.J. (1985). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology, 5, 69-76.
66. Salas, M., Park, S., Srivatanakul, M., and Smith, R. (2001). Temperature influence on stable T-DNA integration in plant cells. Plant Cell Reports 20, 701-705.
67. Sangwan, R. S., Bourgeois, Y., Brown, S., Vasseur, G., and Sangwan-Norreel, B. (1992). Characterization of competent cells and early events of Agrobacteriummediated genetic transformation in Arabidopsis thaliana. Planta 188, 439-456.
68. Sargent, R. D. (2004). Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society of London B: Biological Sciences 271, 603-608.
69. Scaramuzzi, F., Apollonio, G., and D'emerico, S. (1999). Adventitious shoot regeneration from Sinningia speciosa leaf discs in vitro and stability of ploidy level in subcultures. In Vitro Cellular Developmental Biology-Plant 35, 217-221.
70. Sederoff, R., Stomp, A. M., Chilton, W. S., and Moore, L. W. (1986). Gene transfer into loblolly pine by Agrobacterium tumefaciens. Nature Biotechnology 4, 647-649.
71. Subramanyam, K., Subramanyam, K., Sailaja, K. V., Srinivasulu, M., and Lakshmidevi, K. (2011). Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Reports 30, 425-436.
72. Suzuki, S., Supaibulwatana, K., Mii, M., and Nakano, M. (2001). Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Science 161, 89-97.
73. Nhut, A., Nguyet, N. A., Phuc, H. T., Huy, N. P., Uyen, P. N., Vi, T. K., Hai, N. T., Binh, N., and Thien, N. Q. (2006). Primary designs of tube-shaped nylon film culture system in shoot regeneration of Sinningia spp. Leaf explants. In Proceedings of International Workshop on Biotechnology in Agriculture 10, 131-133.
74. Takagi, H., Sugawara, S., Saito, T., Tasaki, H., Yuanxue, L., Kaiyun, G., Han, D. S., Godo, T., and Nakano, M. (2011). Plant regeneration via direct and indirect adventitious shoot formation and chromosome-doubled somaclonal variation in Titanotrichum oldhamii (Hemsl.) Solereder. Plant Biotechnology Reports 5, 187195.
75. Tang, Z., Lin, H., Shi, L., and Chen, W. (2007). Rapid in vitro multiplication of Chirita longgangensis WT Wang: an endemic and endangered gesneriaceae species in China. HortScience 42, 638-641.
76. Tee, C. S., and Maziah, M. (2005). Optimization of biolistic bombardment parameters for Dendrobium Sonia 17 calluses using GFP and GUS as the reporter system. Plant Cell, Tissue and Organ Culture 80, 77-89.
77. Toth, S., Kiss, C., Scott, P., Kovacs, G., Sorvari, S., and Toldi, O. (2006). Agrobacterium-mediated genetic transformation of the desiccation tolerant resurrection plant Ramonda myconi (L.) Rchb. Plant Cell Reports 25, 442-449.
78. Tsai, Y. T., Chen, P. Y., and To, K. Y. (2012). Plant regeneration and stable transformation in the floricultural plant Cleome spinosa, a C(3) plant closely related to the C(4) plant C. gynandra. Plant Cell Reports 31, 1189-1198.
79. Turan, S., Cornish, K., and Kumar, S. (2014). Highly efficient callus-mediated genetic transformation of Parthenium argentatum Gray, an alternate source of latex and rubber. Industrial Crops and Products 62, 212-218.
80. Vain, P., McMullen, M. D., and Finer, J. J. (1993). Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Reports 12, 84-88.
81. White, P. R. (1939). Potentially unlimited growth of excised plant callus in an artificial nutrient. American Journal of Botany 26, 59-64.
82. Wuttisit, M., and Kanchanapoom, K. (1996). Tissue culture propagation of gloxinia. Suranaree Journal of Science and Technology 3, 63-67.
83. Xu, Q. L., Hu, Z., Li, C. Y., Wang, X. Y., and Wang, C. Y. (2009). Tissue culture of Sinningia speciosa and analysis of the in vitro-generated tricussate whorled phyllotaxis (twp) variant. In Vitro Cellular Developmental Biology - Plant 45, 583-590.
84. Yuan, Z. C., and Williams, M. (2012). A really useful pathogen, Agrobacterium tumefaciens. The Plant Cell 24, tpc 112 tt1012.
85. Zaitlin, D. (2012). Intraspecific diversity in Sinningia speciosa (Gesneriaceae: Sinningieae), and possible origins of the cultivated florist's gloxinia. AoB Plants 2012, pls039.
86. Zaitlin, D., and Pierce, A. J. (2010). Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome 53, 1066-1082.
87. Zambre, M., Terryn, N., De Clercq, J., De Buck, S., Dillen, W., Van Montagu, M., Van Der Straeten, D., and Angenon, G. (2003). Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216, 580-586.
88. Zhang, B. H., Liu, F., Liu, Z. H., Wang, H. M., and Yao, C. B. (2001). Effects of kanamycin on tissue culture and somatic embryogenesis in cotton. Plant Growth Regulation 33, 137-149.
89. Zhang, M. Z., Ye, D., Wang, L. L., Pang, J. L., Zhang, Y. H., Zheng, K., Bian, H. W., Han, N., Pan, J. W., Wang, J. H., Zhu, M. Y. (2008). Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa). Plant Molecular Biology 67, 419-427.
90. Zhao, Z. Y., Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., Pierce, D. (2000). Agrobacterium-mediated sorghum transformation. Plant Molecular Biology 44, 789-798
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4098-
dc.description.abstract大岩桐是十分著名的園藝植物,因其花色及花型上的多變而受到大眾喜愛。大岩桐基因體小(300 Mbp)、短的生活史、自交親和性高及組織培養上容易再生等優點,皆支持其發展成研究花部發育機制的模式物種,為此有必要以基因轉殖之技術,輔佐了解相關調控花發育基因之功能性,但目前仍沒有明確的轉殖流程可遵循,因此本研究之目的為優化農桿菌及基因槍的轉殖條件。農桿菌轉殖中 GUS 訊號顯示以 1 ppm BA 前處理大岩桐三週大幼苗三天並與農桿菌菌株 EHA 105 共配養五天的處理方式下可得到暫時性的轉殖率 78.3 %,同樣條件下可獲得 17.2 %的再生率及 2.1 %的轉殖率。GUS 報導基因顯示大岩桐四週大幼苗在基因槍氦氣壓力 900 psi 下,6 公分及 9 公分的距離可分別獲得 58.1 % 與 21.6 % 的暫時性轉殖率。兩者轉殖的效率顯示農桿菌轉殖策略優於基因槍。另一方面,癒傷組織因生長快速容易再生適合做為轉殖的材料,本研究也成功從大岩桐葉片中以0.1 ppm 2,4-D 和 1 或 2 ppm BA 搭配 25 mM 或 50 mM 的山梨糖醇誘導出胚性癒傷組織(embryogenic callus)。本研究優化農桿菌介導的轉殖條件將有助於大岩桐調控花部發育基因功能性分析研究。zh_TW
dc.description.abstractSinningia speciosa is a popular houseplant because of its big flower with a remarkable diversity in colors, patterns and shapes. S. speciosa has a small genome size (300 Mb), short life cycle, self-compatible, easily propagated in tissue culture therefore is emerging as a model plant for flower development studies. However, a reliable genetic transformation system is not available in S. speciosa. To this end, the Agrobacterium mediated transformation and particle bombardment transformation were tested in this study. Transient GUS expression assay showed that 3 days pre-culture of three weeks old seedlings on medium supplied with 1 ppm BA and co-culture for 5 days with Agrobacterium strain EHA105 achieved an overall transient transformation rate of 78.3%. Under these optimized conditions, the regeneration rate is 17.2 % and the transformation rate is up to 2.1 %. Another approach is particle bombardment transformation for optimizing genetic transformation system. In GUS transient assay, it was found that under helium pressure 900 psi, at distance 6 and 9 cm displayed the transient transformation rate of 58.1 % and 21.6 % respectively. The transformation efficiency of two approaches demonstrated that Agrobacterium-mediated
transformation is better than particle bombardment transformation. Because callus grows rapidly and regenerate easily, it serves as a good material for transformation. I also successfully induced embryogenic callus with 0.1 ppm 2, 4-D and 2 ppm BA plus 25 or 50 mM sorbitol in the medium. Callus transformation rate will be tested further. This study optimized the transformation protocol for studying gene regulation and gene function in S. speciosa.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T09:20:42Z (GMT). No. of bitstreams: 1
ntu-105-R03b21014-1.pdf: 10000163 bytes, checksum: ea7c7297301fd98c6a206d6276edf78b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContent
致謝................................................................................................................................ I
中文摘要....................................................................................................................... II
Abstract ........................................................................................................................ III
Content ......................................................................................................................... IV
Index of Tables and Figures ...................................................................................... VIII
Abbreviations ............................................................................................................... XI
Introduction .................................................................................................................... 1
1. Plant genetic transformation .......................................................................... 1
1.1. Agrobacterium-mediated transformation ........................................... 1
1.2. Particle bombardment transformation ................................................ 3
2. The high diversity in angiosperms (flowering plants) ................................... 4
3. Sinningia speciosa, a good material to study floral symmetry and flower
shape ..................................................................................................................... 4
4. Genetic transformation in S. speciosa ............................................................ 7
4.1. Agrobacterium-mediated transformation ........................................... 7
4.2. Particle bombardment transformation .............................................. 12
5. Callus as a novel substitute for genetic transformation in S. speciosa ........ 13
Aim of this study ................................................................................................ 14
Materials and Methods ................................................................................................. 15
1. Plant material and growth conditions ............................................................. 15
2. Transient transformation by Agrobacterium-mediated transformation for
Sinningia speciosa .............................................................................................. 15
2.1. Plasmid and Agrobacterium strains ................................................... 15
2.2. Preparing aseptic seedlings for Agrobacterium-mediated
transformation ........................................................................................... 16
2.3. Agrobacterium-mediated transformation ........................................... 17
2.4. Paraffin section ................................................................................... 22
3. Transgenic plant selection .............................................................................. 22
3.1. Agrobacterium washing ..................................................................... 23
3.2. Selection of transformed shoots ......................................................... 23
3.3. Calculation of regeneration rate ......................................................... 25
3.4. Vitrification of transgenic plants ........................................................ 26
3.4.1. GUS activity assay .......................................................................... 26
3.4.2. RT-PCR of GUS and NPTII ........................................................... 26
3.4.3. Southern blotting ............................................................................. 29
3.5. Calculation of transformation rate...................................................... 30
4. Callus induction and regeneration of S. speciosa ........................................... 30
4.1. Callus induction from mature leaf ...................................................... 30
Results .......................................................................................................................... 38
1. Optimization of Agrobacterium-mediated transformation .......................... 38
1.1. Optimization of co-culture time ....................................................... 38
1.2. Optimization of developmental stage of S. speciosa and
Agrobacterium strain ................................................................................. 42
1.3. Optimization of pre-culture time ..................................................... 44
1.4. T-DNA insertion confirmation ........................................................ 48
2. Establishment of particle bombardment transformation for genetic
transformation in S. speciosa: ............................................................................. 56
2.1. Optimization of physical parameters of hilum pressure and target
distance ...................................................................................................... 56
3. Callus as an excellent alternative explant for genetic transformation ......... 60
3.1. Callus induction ............................................................................... 60
3.2. Shoot regeneration from callus ........................................................ 72
3.3. Callus transformation ....................................................................... 75
Discussion .................................................................................................................... 79
1. The conditions of Agrobacterium infection in S. speciosa .......................... 79
1.1. The effects of photoperiod and temperature during co-culture on
transformation ........................................................................................... 79
1.2. The extended co-culture time needed for S. speciosa transformation.
……………………………………………………………………..80
1.3. The genotype-dependent susceptibility to Agrobacterium EHA 105
……………………………………………………………………..81
2. Factors that cause long regeneration time in transformation of S. speciosa 82
2.1. The effect of cefotaxime on callus formation and shoot regeneration
……………………………………………………………………..82
2.2. Dosage effect of kanamycin on transformation success .................. 83
3. Factors contribute to the unstable transformation system............................ 84
3.1. Unstable pressurization process by syringe ..................................... 84
3.2. The different cell type between transformed cell and regenerated cell
……………………………………………………………………..85
4. Callus as explants to facilitate transformation ............................................. 86
4.1. Optimization of other factors on callus transformation with
Agrobacterium ........................................................................................... 86
4.2. Particle bombardment transformation .............................................. 87
Conclusion and future prospects .................................................................................. 89
References .................................................................................................................... 91
Appendixes .................................................................................................................. 99
dc.language.isoen
dc.subject基因槍zh_TW
dc.subject大岩桐zh_TW
dc.subject基因轉殖zh_TW
dc.subject農桿菌zh_TW
dc.subject癒傷組織zh_TW
dc.subjectparticle bombardmenten
dc.subjectSinningia speciosaen
dc.subjectcallusen
dc.subjectgenetic transformationen
dc.subjectAgrobacteriumen
dc.title大岩桐基因轉殖系統之優化zh_TW
dc.titleOptimization of the genetic transformation system
for Sinningia speciosa
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor洪傳揚(Chwan-Yang Hong)
dc.contributor.oralexamcommittee陶建英(Jian-Ying Tao),蘇睿智(Jui-Chih Su),蔡新聲(Hsin-Sheng TSAI)
dc.subject.keyword大岩桐,基因轉殖,農桿菌,基因槍,癒傷組織,zh_TW
dc.subject.keywordSinningia speciosa,genetic transformation,Agrobacterium,particle bombardment,callus,en
dc.relation.page120
dc.identifier.doi10.6342/NTU201602983
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf9.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved