請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40987
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馬劍清 | |
dc.contributor.author | Cheng-Wei Wang | en |
dc.contributor.author | 汪政緯 | zh_TW |
dc.date.accessioned | 2021-06-14T17:10:22Z | - |
dc.date.available | 2009-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-26 | |
dc.identifier.citation | [1]K. O. Hill, Y. D. Fujii, C. Johnson, and B. S. Kawasaki, (1978) “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Fiber Fabrication,” Applied Physics Letters, 32(10), 647-649.
[2]G. Meltz, W. W. Money, and W. H. Glem, (1989) “Formation of Bragg Gratings in Optical Fibres by a Transverse Holographic Method,” Optics Letters, 14(15), 823-825. [3]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, (1993) “Bragg Gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure through a Phase Mask,” Applied Physics Letters, 62(10), 1035-1037. [4]D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, (1993) “Production of in-Fiber Gratings Using a Diffractive Optical Element,” Electronics Letters, 29(6), 566-568. [5]I. Bennion, J. A. R. Williams, L. Zhang, S. K. and N. J. Doran, (1996) “Tutorial Review, UV-Written in-Fiber Bragg Gratings,” Optics Quantum Electronics, 28(2), 93-135. [6]K. O. Hill, and G. Meltz, (1997) “Fiber Bragg Gratings Technology Fundamentals and Overview,” Journal of Lightwave Technology, 15(8), 1263-1276. [7]Raman Kashyap, (1999) “Fiber Bragg Gratings,” Academic Press, San Diego. [8]T. Erdogan, (1997) “Fiber Grating Spectra,” Journal of Lightwave Technology, 15(8), 1277-1294. [9]M. A. Muriel and A. Carballar, (1997) “Internal Field Distributions in Fiber Bragg Gratings,” IEEE Photonics Technology Letters, 9(7), 955-957. [10]J. F. Nye, (1957) “Physical Properties of Crystals: Their Representation by Tensors and Matrices,” Oxford University Press, New York. [11]A. Berthold and R. Dändliker, (1988) “Determination of the Individual Strain-Optic Coefficients in Single-Mode Optical Fibers,” Journal of Lightwave Technology, 6(1), 17-20. [12]S. Takahashi and S. Shibata, (1979) “Thermal Variation of Attenuation for Optical Fibers,” Journal of Non-Crystalline Solids, 30(3), 359-370. [13]Eric Udd, (1991) “Fiber Optic Sensors: an Introduction for Engineers and Scientist,” John Wiley & Sons, New York. [14]Eric Udd, (1995) “Fiber Optic Smart Structure,” John Wiley & Sons, New York. [15]K. T. V. Grattan and B. T. Meggitt, (2000) “Optical Fiber Sensor Technology: Advanced Applications - Bragg Gratings and Distributed Sensors,” Kluwer Academic, Boston. [16]Y. J. Rao, (1997) “In-Fiber Bragg Grating Sensors,” Measurement Science and Technology, 8, 355-375. [17]Y. J. Rao, (1999) “Recent Progress in Applications of in-Fiber Bragg Grating Sensors,” Optics and Lasers in Engineering, 31, 297-324. [18]X. Tao, L. Tang, W. C. Du, and C. L. Choy, (2000) “Internal Strain Measurement by Fiber Bragg Grating Sensors in Textile Composites,” Composites Science and Technology, 60, 657-669. [19]H. Tai, (2002) “Simple Numerical Simulation of Strain Measurement,” Proceedings of SPIE, 4772, 13-24. [20]A. Sikora, (2006) “Impulse Strain Processing Using Uniform Fibre Bragg Grating. Numerical Simulation,” Proceedings of SPIE, 6159, 61592C. [21]A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, (2005) “Response of Fiber Bragg Gratings to Longitudinal Ultrasonic Waves,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(2), 304-312. [22]H. Y. Ling, K. T. Lau, W. Jin, K. C. Chan, (2007) “Characterization of Dynamic Strain Measurement Using Reflection Spectrum from a Fiber Bragg Grating,” Optics Communications, 270(1), 25-30. [23]G. A. Ball and W. W. Morey, (1992) “Continuously Tunable Single-Mode Erbium Fiber Laser,” Optics Letters, 17(6), 420-422. [24]G. A. Ball and W. W. Morey, (1994) “Compression Tuned Single Frequency Bragg Grating Fiber Laser,” Optics Letters, 19(23), 1979-1981. [25]S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and J. Jeong, (1998) “Channel Switching Active Add/Drop Multiplexer with Tunable Gratings,” Electronics Letters, 34(1), 104-105. [26]T. Inui, T. Komukai, and M. Nakazawa, (2001) “Highly Efficient Tunable Fiber Bragg Grating Filters Using Multilayer Piezoelectric Transducers,” Optics Commmunications, 190, 1-4. [27]J. A. Rogers, B. J. Eggleton, J. R. Pedrazzani, and T. A. Strasser, (1999) “Distributed on-Fiber Thin Film Heaters for Bragg Gratings with Adjustable Chirp,” Applied Physics Letters, 74(21), 3131-3133. [28]H. Mavoori, S. Jin, R. P. Espindola, and T. A. Strasser, (1999) “Enhanced Thermal and Magnetic Actuations for Broad-Range Tuning of Fiber Bragg Grating-Based Reconfigurable Add/Drop Devices,” Optics Letters, 24(11), 714-716. [29]G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, (1995) “Passive Temperature-Compensation Package for Optical Fiber Gratings,” Applied Optics, 34(30), 6859-6861. [30]T. Iwashima, A. Inoue, M. Shigematsu, M. Nishimura, and Y. Hattori, (1997) “Temperature Compensation Technique for Fiber Bragg Gratings Using Liquid Crystalline Polymer Tubes,” Electronics Letters, 33(5), 417-419. [31]K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, (1990) “Efficient Mode Conversion in Telecommunication Fiber Using Externally Written Gratings,” Electronics Letters, 26(6), 1270-1272. [32]D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, (1998) “Long-Period Fiber Grating Fabrication with Focused CO2 Laser Pulses,” Electronics Letters, 34(3), 302-303. [33]Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, (1999) “Fabrication of Long-Period Fiber Gratings by Focused Irradiation of Infrared Femtosecond Laser Pulses,” Optics Letters, 24(10), 646-648. [34]M. L. von Bibra, A. Roberts, and J. Canning, (1999) “Fabrication of Long-Period Fiber Gratings by Use of Focused Ion-Beam Irradiation,” Optics Letters, 26(11), 765-767. [35]M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Berbner, and S. Roorda, (2000) “Ion-Implantation-Induced Densification in Silica-Based Glass for Fabrication of Optical Fiber Gratings,” Journal of Applied Physics, 88(10), 5534-5537. [36]G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, (2001) “High Temperature Stability of Long-Period Fiber Gratings Produced Using an Electric Arc,” Journal of Lightwave Technology, 19(10), 1574-1579. [37]I. K. Hwang, S. H. Yun, and B. Y. Kim, (1999) “Long-Period Fiber Gratings Based on Periodic Microbends,” Optics Letters, 24(18), 1263-1265. [38]B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, (1999) “Grating Resonance in Air-Silica Microstructured Optical Fibers,” Optics Letters, 24(21), 1460-1462. [39]C. Y. Lin, and L. A. Wang, (1999) “Loss Tunable Long Period Fibre Grating Made from Etched Corrugation Structure,” Electronics Letters, 35(21), 1872-1873. [40]M. Vaziri and C. C. Chen, (1992) “Etched Fiber as Strain Gauge,” Journal of Lightwave Technology, 10(6), 836-841. [41]M. Vaziri and C. C. Chen, (1997) “An Etched Two-Mode Fiber Modal Coupling Element,” Journal of Lightwave Technology, 15(3), 474-481. [42]S. M. Melle, K. Liu, and R. M. Measures, (1992) “A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors,” IEEE Photonics Technology Letters, 4(5), 516-518. [43]A. D. Kersey, T. A. Berkoff , and W. W. Morey, “Two-Channel Fiber Bragg-Grating Strain Sensor with High-Resolution Interferometric Wavelength-Shift Detection,” Proceedings of SPIE, 1798, 48-55. [44]A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, (1997) “Fiber Grating Sensors,” Journal of Lightwave Technology, 15(8), 1442-1463. [45]蔣彥儒,王立康,(2003),“溫度無感之布拉格式光纖光柵應變感測系統之研究”,國立清華大學電機工程學系博士論文。 [46]Y. B. Lin, C. L. Pan, Y. H. Kuo, K. C. Chang, and J. C. Chern, (2005) “Online Monitoring of Highway Bridge Construction Using Fiber Bragg Grating Sensors,” Smart Materials and Structures, 14, 1075-1082. [47]黃松輝,羅裕龍,(2005),“週期漸變型布雷格光纖光柵相位響應之重建與參數估測之研究”,國立成功大學電腦與通信工程研究所碩士論文。 [48]江家慶,單秋成,(2003),“能量調變型光纖光柵感應器”,第二十屆機械工程研討會。 [49]葉耀文,馬劍清,(2004),“短週期光纖光柵在動態系統的量測與應用”,國立台灣大學機械工程研究所碩士論文。 [50]許碩修,馬劍清,(2005),“能量調變型光纖光柵感測器在動態系統的實驗量測”,國立台灣大學機械工程研究所碩士論文。 [51]莊國志,馬劍清,(2005),“以長週期光纖光柵作能量調變之光纖光柵感測系統動態實驗”,中華民國力學學會第二十九屆全國力學會議。 [52]林柏睿,馬劍清,(2006),“高靈敏度光纖濾波器與高感度光纖光柵之開發及應用於量測穩態和暫態波傳之研究”,國立台灣大學機械工程研究所碩士論文。 [53]梁正言,馬劍清,(2007),“高頻面內光纖光柵感測器及其動態量測系統之開發與研究”,國立台灣大學機械工程研究所碩士論文。 [54]Bahaa E. A. Saleh and Malvin Carl Teich, (1991) “Fundamentals of photonics,” John Wiley & Sons, New York. [55]Robert D. Blevins, (1979) “Formulas for natural frequency and mode shape,” Van Nostrand Reinhold, New York. [56]“AQ6331 Optical Spectrum Analyzer Instruction Manual,” Ando Electric Co., LTD. [57]“PDA10CS Operating Manual-Switchable Gain, Amplified InGaAs Detector,” Thorlabs, Inc. [58]“SC-8200應變規信號放大器使用手冊”,多如有限公司。 [59]“P-3500 Digital Strain Indicator Instruction Manual,” Measurements Group, Inc. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40987 | - |
dc.description.abstract | 光纖具有優良的機械性質、高靈敏度,以及不受電磁干擾等優點,促使了光纖感測技術的研發在近年來蓬勃發展。尤其以布拉格光纖光柵感測器最為受到重視,其在靜態與低頻的動態量測能力已受到肯定,且有大量應用在各種工程結構量測的成功實例,不過對於高頻及暫態方面的量測能力,還有待進一步的研究與開發。
在布拉格光纖光柵的理論分析上,本文利用模態耦合理論探討反射頻譜響應,模擬布拉格光纖光柵在靜態與動態應變場下的行為特性,顯示感測靈敏度隨著頻率增加而下降,以及增加應變頻率與振幅會造成感測訊號失真的現象,並建立失真臨界的概念,探討布拉格光纖光柵的動態感測範圍與限制,可作為實際應用時的參考依據。 在布拉格光纖光柵的實驗量測上,本文利用本實驗室開發的能量調變感測系統,針對各種結構件承受動態撞擊負載而產生的暫態波傳訊號進行應變量測,包括直立圓桿構件、中空圓管構件及懸吊鋼索構件,也和應變規進行同步量測並相互比較。此外再分析實驗結果的頻譜響應,並和理論及有限元素法相互對照,多方驗證了布拉格光纖光柵感測器優異的動態應變量測能力,也對結構件的暫態波傳特性有所了解並建立相關應用。 | zh_TW |
dc.description.abstract | Recently, the optical fiber sensing technologies, especially fiber Bragg grating (FBG) sensors, have been rapidly developed due to the advantages such as excellent mechanical properties, high sensitivity and electromagnetic immunity. The measurement ability of FBG sensors in static and low frequency responses has been demonstrated, and there are many successful engineering applications. However, further investigations are needed for FBG to improve the measurement ability in high frequency and transient responses.
In the theoretical analysis of FBG, the coupled-mode theory is used to present the reflected spectra and to simulate the responses under static and dynamic strain fields. The results indicate that the sensitivity declines with the increase of input frequency and the increase of frequency and amplitude of strain result in signal distortion. The concept of distortion that limit the practical applications is established to discuss the dynamic sensing range of FBG. In the experiments of FBG, the power modulated sensing system is established to measure the transient responses of dynamic strain for structural components under impact loadings, which include solid rod, hollow tube and suspended cable. The strain gage is also used to measure simultaneously with the FBG sensors to compare the results obtained from two different techniques. In addition, the frequency spectra of experimental results are analyzed and compared with theory and finite element method. According to the available results, it is proved that FBG sensors have excellent ability for dynamic strain measurement. At the same time, the transient wave propagation properties of structural components are analyzed in detail and the associated applications are established. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:10:22Z (GMT). No. of bitstreams: 1 ntu-97-R95522508-1.pdf: 11840910 bytes, checksum: c82076edd016e20ea78b3e2efc91a0ee (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 表目錄 VII 圖目錄 IX 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 4 1-3 論文內容簡介 7 第二章 光纖及光纖光柵之基本原理 9 2-1 基本光纖光學 9 2-2 光纖光柵基本原理 11 2-3 光纖光柵之分類 12 2-3-1 短週期式光纖光柵 13 2-3-2 長週期式光纖光柵 13 2-4 光纖光柵之製作 14 2-5 光彈效應與熱光效應 18 2-5-1 光彈效應 18 2-5-2 熱光效應 21 2-6 共振波長飄移理論 22 2-6-1 共振波長飄移原理 22 2-6-2 平面應力下之情況 24 2-6-3 單軸向應力下之情況 25 第三章 布拉格光纖光柵之模擬與分析 31 3-1 模態耦合理論 31 3-2 基本頻譜特性 35 3-3 靜態應變場下之頻譜響應 36 3-4 動態應變場下之頻譜響應 37 3-4-1 步階函數應變波傳 37 3-4-2 穩態正弦函數應變波傳 38 第四章 直立圓桿構件之暫態應變量測 64 4-1 圓桿共振頻率之理論與數值解析 64 4-1-1 縱向伸展模態 64 4-1-2 橫向彎曲模態 65 4-2 訊號分析工具之基本理論 67 4-3 能量調變型光纖光柵量測系統 68 4-4 實驗架設說明 69 4-5 實驗儀器設備與元件 70 4-5-1 寬頻光源 71 4-5-2 光隔離器與光環行器 71 4-5-3 濾波器 71 4-5-4 光耦合器 71 4-5-5 光頻譜分析儀 72 4-5-6 光二極體 72 4-5-7 應變規信號制約放大器 72 4-5-8 示波器 73 4-6 實驗結果與頻率分析 73 第五章 中空圓管構件之暫態應變量測 107 5-1 中空圓管共振頻率之理論與數值解析 107 5-1-1 縱向伸展模態 107 5-1-2 橫向彎曲模態 107 5-2 實驗架設說明 108 5-3 實驗結果與頻率分析 109 第六章 懸吊鋼索構件之暫態應變量測 135 6-1 鋼索共振頻率之理論與數值解析 135 6-2 鋼索受撥擊實驗 136 6-2-1 實驗架設說明 136 6-2-2 實驗儀器設備與元件 136 6-2-3 實驗結果與頻率分析 137 6-3 長度200mm之鋼索受撞擊實驗 139 6-3-1 實驗架設說明 139 6-3-2 實驗結果與頻率分析 140 6-4 長度280mm之鋼索受撞擊實驗 141 6-4-1 實驗架設說明 141 6-4-2 實驗結果與頻率分析 141 6-5 弦與梁之共振特性探討 143 6-6 光纖受撥擊實驗 144 6-6-1 實驗架設說明 144 6-6-2 實驗結果與頻率分析 144 6-7 鋼索張力量測實驗 146 6-7-1 實驗架設說明 146 6-7-2 實驗結果與頻率分析 147 6-8 存在缺陷之鋼索受撞擊實驗 148 6-8-1 實驗架設說明 148 6-8-2 實驗結果與頻率分析 148 6-9 鋼索斷裂實驗 149 6-9-1 實驗架設說明 149 6-9-2 實驗結果與討論 150 第七章 結論與未來展望 203 7-1 結論 203 7-2 未來展望 204 參考文獻 206 附錄A 色散偏移光纖規格 212 附錄B 光敏光纖規格 214 附錄C 寬頻光源特性 215 附錄D 光頻譜分析儀規格 216 附錄E 光二極體規格 218 附錄F 應變規信號制約放大器規格 219 附錄G 示波器規格 221 附錄H 應變指示器規格 223 | |
dc.language.iso | zh-TW | |
dc.title | 應用布拉格光纖光柵感測器於結構件承受撞擊之暫態應變量測 | zh_TW |
dc.title | The Applications of Fiber Bragg Grating Sensors in the Transient Strain Measurements of Structural Components Under Impact Loadings | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王仲宇,劉文豐,何旭川 | |
dc.subject.keyword | 布拉格光纖光柵,模態耦合理論,反射頻譜,能量調變感測系統,結構件,暫態波傳,應變規,有限元素法, | zh_TW |
dc.subject.keyword | fiber Bragg grating,coupled-mode theory,reflected spectrum,power modulated sensing system,structural components,transient wave propagation,strain gage,finite element method, | en |
dc.relation.page | 210 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 11.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。