請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40985
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾添東(Tien-Tung Chung) | |
dc.contributor.author | Yi-Ting Jheng | en |
dc.contributor.author | 鄭伊婷 | zh_TW |
dc.date.accessioned | 2021-06-14T17:10:15Z | - |
dc.date.available | 2011-07-30 | |
dc.date.copyright | 2008-07-30 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-26 | |
dc.identifier.citation | [1] J. Park, X. Li, “Effect of flow and temperature distribution on the performance of a PEM fuel cell stack,” Journal of Power Sources 162, pp.444-459, 2006
[2] W. K. Lee, C. H. Ho, J. W. V. Zee and M. Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell, ” Power Source 84, pp. 45-51, 1999 [3] M. Mathias, J. Roth, J. Fleming and W. Lehnert, Handbook of fuel cells-fundamentals technology and applications volume 3, John Wiley & Sons Ltd, pp. 526-529, 2003 [4] Yei- Hung Lai, Daniel P Miller, Chunxin Ji, and Thomas A Trabold, “Stack Compression on PEM Fuel Cells,” Proceedings of the First International Conference on Fuel Cell Science, Engineering and Technology, Rochester, New York USA , 2004 [5] J. Evertz and M. Gunthart, “Structure concepts for lightweights and cost-effective end plated for fuel cell stacks,” In 2nd European PEFC Forum 2003. [6] Shuo-Jen Lee , Chen-De Hsu, Ching-Han Huan, “Analyses of the Fuel Cell Stack Assembly Pressure,” Journal of Power Sources, 145 pp. 353-361, 2005 [7] B. Wozniczka, “Chemical fuel cell stack with compression bands,” US Patent 5993987, 1999 [8] S. A. Grot, “Fuel cell stack compression method and apparatus,” US Patent 6428921, 2002 [9] P.R. Gibb, “Compression assembly for an chemical fuel cell stack,” US Patent 6057053, 2000 [10] O.J. Murphy, “Apparatus and method for compressing a stack of chemical cells,” US Patent 6040071, 2000 [11] Z. Dong, “Solid gage fuel cell,” US Patent 6720101, 2004 [12] X. Wang, Y. Song and B. Zhang, “Pressurized end plate for uniform pressure distributions in PEM fuel cells,” First International Conference on Fuel Cell Development and Deployment, Storrs, Connecticut, 2004. [13] C. K. Lin, T. T. Chen, Y. P. Chyou and L. K. Chiang, “Thermal stress analysis of a planar SOFC stack,” Power Sources. J., vol. 164, pp. 238-251, 2007 [14] M. H. Wang, H. Guo, C. F. Ma, F. Ye, J. Yu, X. Liu, Y. Wang, C. Y. Wang, “Temperature Measurement Technologies and Their Application in The Research of Fuel Cells,” Proceedings of the First International Conference on Fuel Cell Science, Engineering and Technology, pp. 95–100, 2003 [15] A. Hakenjos, H. Muenter, U. Wittstadlt, C. Hebling, “A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding,” Journal of Power Sources, 131 pp. 213–236, 2004. [16] R. Zheng, Z. Dong, “Finite Element Structure Design of Fuel Cell Plate”, 11th Canadian Hydrogen Conference, pp.183-191, 2001 [17] Yunus, A., “Heat transfer – a practical approach”, McGraw-Hill, New York, Chap.6-9 and pp.868, 2004. [18] 邱求慧, “結構最佳設計保守近似法之改良”, 台大機械所博士論文, 1999. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40985 | - |
dc.description.abstract | 本文研究質子交換膜燃料電池之結構分析與最佳化設計。目的為使用有限元素法分析燃料電池在穩態的運作下其結構行為。首先,提出一新型之質子交換膜燃料電池,並發展一參數化繪圖程式以自動繪製燃料電池所有元件之實體模型,將模型匯入至有限元素分析軟體建立網格模型。此分析模型之負載包括化學反應產生之熱、碳板內冷卻水效應與施加於端板上之鎖合力,計算出燃料電池之溫度分布與熱變形。單電池與多電池組燃料電池均進行此分析。並且使用紅外線熱影像儀量測燃料電池表面之溫度分布,將分析結果與量測結果做驗證,溫度分布趨勢是相同且接近的。根據分析結果,熱效應是造成燃料電池各元件產生較高應力之主因且會造成碳板破裂。最後,提出一整合型最佳化設計程式,此程式整合電腦輔助繪圖軟體、有限元素分析軟體及數值搜尋,以找出滿足設計限制條件且提高碳板結構強度之最佳化設計。從分析與最佳設計之結果顯示,本文之結構分析與最佳化設計方法可有效率地應用於燃料電池之分析與設計。 | zh_TW |
dc.description.abstract | This paper studies the structural analysis and optimum design of a proton exchange membrane (PEM) fuel cell stack. The aim of this study is to recognize the structural behaviors of PEM fuel cell under operation stage at steady state by using finite element analysis (FEA). First, the PEM fuel cell models are constructed with whole components. The models for FEA are generated by a CAD software with a parametric program, and then are imported into FEA software to generate meshed model. Next, with given thermal and structural loadings, a series of finite element analyses are executed to analyze the thermal and structural behaviors of PEM fuel cell. A meshed model of a single cell is generated and analyzed at the beginning. The boundary conditions are applied into the meshed model, such as heat generation of chemical reaction, force convection of cooling water, and assembly pressure on the end plate, to obtain the behaviors of single cell. Besides, the analyses of multiple-cell short stack are executed as well. Finally, temperature measurement method of infrared (IR) thermography is applied to record the temperature distribution of exterior surfaces in a PEM fuel cell and verify the simulation results. It shows that the analysis results are generally close to the experiment results. The thermal effect is identified as the main factor for the high stresses and will cause the failure of the fuel cell components, especially for carbon plates. Also, an optimum design procedure is performed to obtain a better carbon plate structure design satisfying the structural safety requirement. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:10:15Z (GMT). No. of bitstreams: 1 ntu-97-R95522610-1.pdf: 13084344 bytes, checksum: c94f251ef9043514c34fd5aafb4e9080 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | Acknowledgments I
Abstract III 摘要 V Table of Contents VII List of Figures IX List of Tables XIII Nomenclature XV Chapter 1 Introduction 1 Chapter 2 Design of a PEM fuel cell stack 9 2.1 Parametric design 9 2.2 Solid modeling 11 Chapter 3 Analysis of a PEM fuel cell stack 13 3.1 Finite element model 13 3.2 Temperature distribution analysis 16 3.2.1 Thermal loadings and boundary conditions 16 3.2.2 Results of temperature distribution analysis 21 3.3 Thermal Deformation Analysis of a PEM Fuel Cell Structure 24 3.3.1 Structural boundary and loading conditions 24 3.3.2 Results of thermal deformation analysis 25 3.3.3 Effect of temperature distribution 31 Chapter 4 Experimental Verification 35 4.1 Temperature Measurement System Setup 35 4.2 Experiment Results 37 4.2.1 Temperature measurement results 37 4.2.2 Cracks in the carbon plate 46 Chapter 5 Optimum Design of a PEM Fuel Cell Structure 49 5.1 Integrated Optimum Design Program 49 5.2 Parameter tests of dimensional sensitivity 53 5.3 Optimization problem 56 5.4 Optimum Design of a PEM fuel cell Structure 58 Chapter 6 Conclusions and Perspectives 61 6.1 Conclusions 61 6.2 Perspectives 62 References 65 VITA 77 | |
dc.language.iso | en | |
dc.title | 質子交換膜燃料電池結構之分析與最佳化設計 | zh_TW |
dc.title | Analysis and Optimum Design of a PEM Fuel Cell Structure | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 史建中,廖運炫,許桓瑞 | |
dc.subject.keyword | 質子交換膜燃料電池,有限元素分析,熱變形分析,結構最佳化設計,紅外線熱影像儀, | zh_TW |
dc.subject.keyword | PEM fuel cell,Finite element analysis,Thermal analysis,Structural optimization,Infrared thermography, | en |
dc.relation.page | 65 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 12.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。