請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40956完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李達源(Dar-Yuan Lee) | |
| dc.contributor.author | Yao-Cyong Chen | en |
| dc.contributor.author | 陳瑤瓊 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:08:43Z | - |
| dc.date.available | 2009-07-30 | |
| dc.date.copyright | 2008-07-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | 王立軍、章申。1982。土壤水介質中Cr(III)與Cr(VI)型態的轉換。環境科學3:38-42。
行政院環保署。2001a。土壤汙染管制標準。環署水字第〇〇七三六八四號。 行政院環保署。2001b。土壤汙染監測基準。環署水字第〇〇七三六五四號。 行政院環保署。2001c。地下水汙染管制標準。環署水字第〇〇七三六八〇號。 行政院環保署。2001d。地下水汙染監測基準。環署水字第〇〇七三六七一號。 行政院環保署。2002。農地土壤重金屬調查與場址列管計畫 (EPA-90-GA13-03- 90A285)。 行政院環保署環檢所。2002。水中六價鉻檢測方法—比色法 (NIEA W320.51A)。 行政院環保署環檢所。2003。土壤中重金屬檢測方法—王水消化法 (NIEA S321.63B)。 行政院環保署環檢所。2004。六價鉻鹼性消化檢測方法—比色法 (NIEA T303.11C)。 余佩芳。2002。評估選擇性離子交換樹脂法抽出土壤有效六價鉻之適用性。國立臺灣大學農業化學研究所碩士論文。 洪崑煌。1996。土壤化學。(譯自 H. L. Bohn, 1985)。P.412。國立編譯館。 陳英旭、朱蔭湄、袁可能、朱祖祥。1990。土壤中鉻的化學行為研究 I.幾種礦物對Cr(VI)的吸附作用。浙江農業大學學報16:119-124。 陳英旭、朱祖祥、何增耀。1993a。土壤、礦物對Cr(VI)吸附機制的研究。農業環境保護12:150-152。 陳英旭、朱祖祥、何增耀。1993b。環境中氧化錳對Cr(III)氧化機理的研究。環境科學學報13:45-50。 陳春泉。1976。桃園縣土壤調查報告。臺灣省農業試驗所報告第三十三號。 楊光盛、林學正。1995。鐵、錳、銅、鋅。P.307、364、385。土壤分析手冊。中華土壤肥料學會。 簡士濠。2006。桃園中壢臺地不同水分境況下含鐵網紋極育土氧化還原形態特徵之鑑定與鐵錳結核生成機制。國立臺灣大學農業化學研究所博士論文。 Ball, D. F. 1964. Loss-on ignition as an estimate of organic matter and organic carbon in non-calcareous soil. J. Soil Sci. 15:84-92. Banerjee, D., and H.W. Nesbitt. 1999. Oxidation of aqueous Cr(III) at birnessite surfaces: Constraints on reaction mechanism. Geochim. Cosmochim. Acta 63:1671-1687. Bartlett, R. J., and B. R. James. 1979. Behavior of chromium in soils. III. Oxidation. J. Environ. Qual. 8:31-35. Bartlett, R. J., and B. R. James. 1993. Redox chemistry of soils. Adv. Agron. 50:151-208. Bartlett, R. J. 1996. Chromium. p.683-701. In D. L. Sparks et al. (ed.) Methods of soil analysis, Part 3. Number 5 in the Soil Science Society of America Book Series. ASA and SSSA, Madison, WI. Bouyoucos, G. J. 1936. Directions for making mechanical analysis of soils by the hydrometer method. Soil Sci. 42:225-228. Childs, C. W. 1975. Composition of iron-manganese concretions from some New Zealand soils. Geoderma 13:141-152. Davies, B. E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci. Soc. Am. Proc. 38:150-151. Fendorf, S. E., and G. Li. 1996. Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol. 30:1614–1617. Feng, X. H., L. M. Zhai, W. F. Tan, W. Zhao, F. Liu, and J. Z. He. 2006. The controlling effect of pH on oxidation of Cr(III) by manganese oxide minerals. J. Colloid Interf. Sci. 298:258-266. Feng, X. H., L. M. Zhai, W. F. Tan, F. Liu, and J. Z. He. 2007. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ. Pollut. 147:366-373. Gee, G. W., and J. W. Bauder. 1986. Partical-size analysis. p.383-411. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2. 2nd ed. ASA and SSSA, Madison, WI. Hudson-Edwards, K. A., M. G. Macklin, C. D. Curtis, and D. J. Vaughan. 1996. Processes of formation and distribution of Pb-, Zn-, Cd-, and Cu-bearing minerals in the Tyne Basin, Northeast England: Implications for metal contaminated river systems. Environ. Sci. Technol. 30:72-80. Jardine, P. M., and D. L. Taylor. 1995. Kinetics and mechanisms of Co(II)EDTA oxidation by pyrolusite. Geochim. Cosmochim. Acta 59:4193-4203. Jeffrey, A. R., W. B. George. 1992. Spectroscopic study of surface redox reactions with manganese oxides. Soil Sci. Soc. Am. J. 56:82-88. Johnson, C. A., and A. G. Xyla. 1991. The oxidation of chromium(III) to chromium(VI) on the surface of manganite (γ-MnOOH). Geochim. Cosmochim. Acta 55:2861-2866. Kay, J. R., M. H. Conklin, C. C. Fuller, and P. A. O’Day. 2001. Processes of nickel and cobalt uptake by amanganese oxide forming sediment in Pinal Creek, Globe Mining District, Arizona. Environ. Sci. Technol. 35:4719-4725. Kim, J. G., J. B. Dixon, C. C. Chusuei, and Y. Deng. 2002. Oxidation of Chromium(III) to (VI) by Manganese Oxides. Soil Sci. Soc. Am. J. 66:306-315. Kožuh, N., J. Štupar, J., and B. Gorenc. 2000. Reduction and oxidation processes of chromium in soils. Environ. Sci. Technol. 34:112-119. Lee, D. Y., Y. N. Shin, H. C. Zeng, C. P. Chen, K. W. Juang, J. F. Lee, L. Tsui. 2006. Using the selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium(VI) phytotoxicity. Plant Soil 281:87-96. Liu, F., C. Colombo, P. Adamo, J. Z. He, and A. Violante. 2002. Trace elements in manganese-iron nodules from a Chinese alfisol. Soil Sci. Soc. Am. J. 66:661-670. Manceau, A., V.A. Drits, E. Silvester, C. Bartoli, and B. Lanson. 1997. Structural mechanisms of Co2+ oxidation by the phyllomanganate buserite. Am. Mineral. 82:1150-1175. McKeague, J. A., and J. H. Day. 1966. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 45:49-62. McKenzie, R. M. 1989. Manganese oxides and hydroxides. p.439-465. In J. B. Dixon and S.B. Weed (ed.) Minerals in soil environments. SSSA Book Series No. 1. SSSA, Madison, WI. McLean, E. O. 1982. Soil pH and lime requirement. p.119-224. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2. 2nd ed. ASA and SSSA, Madison, WI. Mehra, O. P. and M. L. Jackson. 1960. Iron oxides removed from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7:317-327. Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p.539-579. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2. 2nd ed. ASA and SSSA, Madison, WI. Nico, P. S., and R. J. Zasoski. 2000. Importance of Mn(III) availability on the rate of Cr(III) oxidation on δ-MnO2. Environ. Sci. Technol. 34:3363–3367. Palmer, C. D. and P. R. Wittbrodt. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Perspect. 92:25-40. Palumbo, A., A. Bellanca, R. Neri, and M. J. Roe. 2001. Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy. Chem. Geol. 173:257-269. Post, J. E., and D. R. Veblen. 1990. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and Rietveld method. Am. Mineral. 75:477-489. Rabenhorst, M. C. 1988. Determination of organic and carbonate carbon in calcareous soils using dry combustion. Soil Sci. Soc. Am. J. 52:965-969. Risser, J. A., and G. W. Bailey. 1992. Spectroscopic study of surface redox reactions with manganese oxides. Soil Sci. Soc. Am. J. 56: 82-88. Shindo, H., and P. M. Huang. 1982. Role of Mn(IV) oxide in abiotic formation of humic substances in the environment. Nature 298:363-365. Song, J., T. Townsend, H. Solo-gabriele, and Y. C. Jang. 2006. Hexavalent chromium reduction in soils contaminated with chromated copper arsenate preservative. Soil Sed. Contam. 15:387-399. Soon, Y. K. and S. Abboud. 1991. A comparison of some methods for soil organic carbon determination. Commun. Soil Sci. Plant Anal. 22:943-954. Stepniewska, Z., K. Bucior, and R. P. Bennicelli. 2004. The effects of MnO2 on sorption and oxidation of Cr(III) by soils. Geoderma 122: 291-296. Tan, W., F. Liu, X. Feng, Q. Huang, and X. Li. 2005. Adsorption and redox reactions of heavy metals on Fe-Mn nodules from Chinese soils. J. Colloid Interface Sci. 284:600-605. Tokunaga, T. K., J. Wan, M. K. Firestone, T. C. Hazen, K. R. Olson, D. J. Herman, S. R. Sutton, and A. Lanzirotti. 2003. In situ reduction of chromium(VI) in heavy contaminated soils through organic carbon amendment. J. Environ. Qual. 32:1641-1649. Tokunaga, T. K., J. Wan, A. Lanzirotti, S. R. Sutton, M. Newville, and W. Rao. 2007. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Enviro. Sci. Technol. 41:4326-4331. USEPA. 2002. Acid digestion of sediments, sludges, and soil (USEPA SW846 Method 3050). Yingxu, C., C. Yiyi, L. Qi, H. Ziqiang, H. Hong, and W. Jianyang. 1997. Factors affecting Cr(III) oxidation by manganese oxides. Pedosphere 7:185-192. Yu, P. F., K. W. Juang, and D. Y., Lee. 2004. Assessment of the phytotoxicity of chromium in soil using the selective ion exchange resin extraction method. Plant Soil 258:333-340. Zhao, D., A. K. Sengupta, and L. Stewart. 1998. Selective removal of Cr(VI) oxyanions with a new anion exchanger. Ind. Eng. Chem. Res. 37:4383-4387. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40956 | - |
| dc.description.abstract | 土壤中存在之 Cr(VI) 對植物的毒性較強,在土壤中移動性較大,而 Cr(III) 的毒性較弱,在土壤中移動性較小,但是當土壤存在高量錳氧化物和高濃度 Cr(III) 時,可能會促使土壤中 Cr(III) 氧化成毒性更高的 Cr(VI),故本篇目的是探討自然存在鐵錳結核含量高之土壤是否具有將 Cr(III) 氧化成毒性更高的 Cr(VI) 能力,及不同土壤、pH 值和錳量是否對氧化 Cr(III) 的能力產生不同影響,與在田間容水量孵育狀態下,探討高錳含量土壤氧化 Cr(III) 所產生 Cr(VI) 的量。試驗土壤為鐵錳結核含量高之土壤,竹圍系土壤 A、竹圍系土壤 B 與後湖系土壤,土壤中總錳量 (王水消化法) 分別為 9.8、1.0 和 0.3 g kg-1,首先發現在 1 mM Cr(III) 溶液,土水比為 1:75 的反應下,竹圍系土壤 A 和竹圍系土壤 B 經過 64 小時後,可分別將 2.65和1.86% 添加的 Cr(III) 氧化成 Cr(VI),而後湖系土壤則測不到 Cr(VI),其原因為竹圍系土壤 A 的錳量 > 竹圍系土壤 B > 後湖系土壤,所以導致此研究結果。其次在pH值為 3-5 的動力反應中,反應約在 64 小時後達到平衡,另外,在反應 192 小時後,竹圍系土壤 A 可將所添加 Cr(III) 的 2.72-3.23% 轉變為 Cr(VI),但是在不同 pH 值下所產生的總 Cr(VI) 量差異並不大,而且所產生的 Cr(VI) 大多數被吸附在土壤固相。在實驗中也觀察到可溶性錳 (MnL) 會隨氧化 Cr(III) 反應時間的增加而增加,顯示反應中所產生的 Cr(VI) 是由於土壤錳氧化物還原所造成的。另外以添加不同量竹圍系土壤模擬不同錳量對氧化 Cr(III) 之影響,當添加相同量 Cr(III) 時,添加愈多錳量土壤會產生愈多的 Cr(VI),然而產生的 Cr(VI) 與土壤所含總錳莫耳數比為 0.015 到 0.010 之間,與理論上 1 mole MnO2 可以產生 0.67 mole Cr(VI) 比較,表示土壤中所含的錳只有一部份錳可將 Cr(III) 氧化,所以導致比 MnO2 氧化 Cr(III) 產生還要少的 Cr(VI)。且本研究也在竹圍系土壤 B 中添加 0、250、500和1000 mg Cr(III) kg-1,並維持在田間容水量孵育下,測定土壤中產生有效性 Cr(VI) 的量,竹圍系土壤 B 在 24 小時後即可用銅飽和 Dowex M4195 和 0.01 M KH2PO4 抽出 18.5-23.8 mg kg-1 的有效性 Cr(VI),經過1個月後總共可產生 24.8-29.7 mg kg-1 的有效性 Cr(VI),隨著 Cr(III) 添加量的改變,產生的 Cr(VI) 差異不顯著,所以土壤中可氧化 Cr(III) 的錳含量多寡為氧化 Cr(III) 成 Cr(VI) 之主要限制因子。因此,當鐵錳結核含量高之土壤一旦遭受到 Cr(III) 汙染時,有可能會產生危害性更大的 Cr(VI)。 | zh_TW |
| dc.description.abstract | Chromium was used in metal plating, wood preservation, and leather tanning, and had been commonly found in contaminated sites. Chromium exists in two oxidation states, Cr(III) and Cr(VI). Chromium(VI) is more hazardous and mobile than Cr(III) in soils. The Mn oxide minerals had been proven to be able to oxidize Cr(III) to Cr(VI). The study investigated the Cr(III) oxidation by natural soils which had high amounts of Fe-Mn nodules under various conditions. Three soils, Chuwei A and B, and Houhu, were used. The results showed that Chuwei A and B soils could oxidize 2.65% and 1.86% of added Cr(III) to Cr(VI) at the soil/water ratio of 1/75, however, no detectable Cr(VI) was found in Houhu soil. The results were mainly due to that the order of total soil Mn contents was Chuwei A > Chuwei B > Houhu. In addition, the amounts of Cr(VI) produced by Chuwei A soil was not affected by pH in the pH range of 3-5. Moreover, most of the produced Cr(VI) were adsorbed by soil solids. We also found that dissolved Mn (MnL) increased with time during the oxidation of Cr(III) by Chuwei A soil, suggesting that the Cr(VI) production is resulted from the reduction of soil Mn oxides. As we increased the amounts of soil added into Cr(III) solutions, the amounts of Cr(VI) production increased. It was due to the increase of quantities of Mn oxides, thus increasing the amounts of Cr(VI) production. The mole ratio of Cr(VI) produced/soil Mn of the Chuwei A soil was 0.015-0.010, which was much smaller than theoretical value of mole ratio of 0.67 of Cr(VI) produced/soil Mn for Cr(III) to be oxidized to Cr(VI) by pure MnO2. The results of Cr(III) oxidation indicated that only a small portion of soil Mn was able to oxidize Cr(III). In order to mimic field conditions, the soil available Cr(VI) produced from the Cr(III) oxidation by the Cr(III)-spiked Chuwei B soils (0, 250, 500, and 1000 mg Cr(III) kg-1) incubated at field capacity as a function of time was extractred by KH2PO4 or DOWEX M4195 resins. The results showed that the amounts of soil available Cr(VI) increased rapidly in one day and reached the level of 24.8-29.7 mg kg-1 after 30 days no matter what the amounts of Cr(III) were spiked, suggesting that the main factor controlling the extent of Cr(VI) production is the contents of soil reducible-Mn for oxidizing Cr(III). Therefore, the Cr(VI) hazard could occur if soils containing high amounts of reducible-Mn were contaminated by Cr(III). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:08:43Z (GMT). No. of bitstreams: 1 ntu-97-R95623001-1.pdf: 949506 bytes, checksum: 66f682a8bfcaad7f3cedaeba7fecf251 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 謝誌………………………………………………………………………………………I
中文摘要………………………………………………………………………………III 英文摘要………………………………………………………………………………V 目錄……………………………………………………………………………………VII 表次……………………………………………………………………………………IX 圖次……………………………………………………………………………………X 第一章 緒論…………………………………………………………………………1 1.1 目前台灣所發現的鉻汙染……………………………………………………1 1.2土壤中鉻的總量與不同氧化還原狀態的鉻對環境危害之差異性…………2 1.3 合成氧化錳礦物對鉻的氧化還原反應………………………………………8 1.4 自然狀態中含高量錳氧化物的土壤對鉻之氧化還原反應………………10 1.5 不同因子對錳氧化物氧化 Cr(III) 的影響………………………………13 1.6 不同抽出方法抽出土壤有效性 Cr(VI)……………………………………15 1.7 研究目的……………………………………………………………………19 第二章 材料與方法…………………………………………………………………20 2.1 試驗土壤採集………………………………………………………………20 2.2 試驗土壤基本性質分析……………………………………………………22 2.2.1土壤水分含量…………………………………………………………22 2.2.2土壤質地………………………………………………………………22 2.2.3 土壤 pH 值…………………………………………………………23 2.2.4 土壤有機質含量 (灰化法)…………………………………………23 2.2.5 土壤有機質含量 (Walkley-Black之濕式氧化法)…………………23 2.2.6 以王水分析法分析土壤全量鉻、錳、鐵和鋁含量…………………24 2.2.7 土壤無定型錳、鐵和鋁氧化物含量…………………………………26 2.2.8 土壤游離性錳、鐵和鋁氧化物含量…………………………………26 2.2.9 土壤可還原性錳……………………………………………………27 2.3 不同土壤對 Cr(III) 氧化的影響…………………………………………28 2.4 不同 pH 值對竹圍系土壤 A 氧化 Cr(III) 的影響………………………29 2.5 以不同土水比模擬不同錳量對氧化 Cr(III) 的影響……………………31 2.6 模擬田間狀態添加 Cr(III),竹圍系土壤 B 所產生有效性 Cr(VI) 含量……………………………………………………………………………32 2.6.1 探討竹圍系土壤 B 所產生有效性 Cr(VI) 含量…………………32 2.6.2以 0.01M KH2PO4 抽出竹圍系土壤 B 所產生有效性 Cr(VI) 含量……………………………………………………………………32 2.6.3 製備銅飽和 Dowex M4195 樹脂…………………………………32 2.6.4以銅飽合 Dowex M4195 樹脂抽出竹圍系土壤 B 所產生有效性 Cr(VI) 含量…………………………………………………………33 第三章 結果與討論…………………………………………………………………35 3.1 試驗土壤性質………………………………………………………………35 3.2 不同土壤對 Cr(III) 氧化的影響…………………………………………41 3.3 不同 pH 值對竹圍系土壤 A 氧化 Cr(III) 的影響………………………45 3.4 以不同土水比模擬不同錳量對 Cr(III) 氧化成 Cr(VI) 的影響…………55 3.5 模擬田間狀態添加 Cr(III),竹圍系土壤 B 所產生有效性 Cr(VI) 含量……………………………………………………………………………60 第四章 結論…………………………………………………………………………68 第五章 參考文獻……………………………………………………………………69 第六章 附錄…………………………………………………………………………77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 土壤 | zh_TW |
| dc.subject | Cr(III) | zh_TW |
| dc.subject | Cr(VI) | zh_TW |
| dc.subject | 氧化還原反應 | zh_TW |
| dc.subject | 錳 | zh_TW |
| dc.subject | Mn | en |
| dc.subject | soil | en |
| dc.subject | Cr(III) | en |
| dc.subject | Cr(VI) | en |
| dc.subject | redox reaction | en |
| dc.title | 不同因子影響具鐵錳結核之土壤對 Cr(III) 的氧化反應 | zh_TW |
| dc.title | Cr(III) oxidation by soils with Fe-Mn nodules as affected by various factors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳尊賢(Zueng-Sang Chen),何聖賓(Sheng-Bin Ho),鄒裕民(Yu-Min Tzou),廖秋榮(Chiu-Jung Liao) | |
| dc.subject.keyword | Cr(III),Cr(VI),氧化還原反應,錳,土壤, | zh_TW |
| dc.subject.keyword | Cr(III),Cr(VI),redox reaction,Mn,soil, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 927.25 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
