請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40914完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Ting-Yuan Chen | en |
| dc.contributor.author | 陳定遠 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:06:30Z | - |
| dc.date.available | 2013-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-27 | |
| dc.identifier.citation | 1. Canfield, D. E.; Rosing, M. T.; Bjerrum, C., Early anaerobic metabolisms. Philos Trans R Soc Lond B Biol Sci 2006, 361, (1474), 1819-34; discussion 1835-6.
2. Pfennig, N., Phototrophic green and purple bacteria: a comparative, systematic survey. Annu Rev Microbiol 1977, 31, 275-90. 3. Pfennig, N., Photosynthetic bacteria. Annu Rev Microbiol 1967, 21, 285-324. 4. Blankenship, R. E., Origin and early evolution of photosynthesis. Photosynth Res 1992, 33, 91-111. 5. Olson, J. M.; Blankenship, R. E., Thinking about the evolution of photosynthesis. Photosynth Res 2004, 80, (1-3), 373-86. 6. Madigan, M. T.; Martinko, J. M.; Parker, J., Brock Biology of Microorganisms. 10 ed.; Pearson Education, Inc.: 2003. 7. Van Niel, C. B., The chemoautotrophic and photosynthetic bacteria. Annu Rev Microbiol 1954, 8, 105-32. 8. Allen, J. F., A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett 2005, 579, (5), 963-8. 9. Varga, A. R.; Staehelin, L. A., Spatial differentiation in photosynthetic and non-photosynthetic membranes of Rhodopseudomonas palustris. J Bacteriol 1983, 154, (3), 1414-30. 10. Scheuring, S.; Goncalves, R. P.; Prima, V.; Sturgis, J. N., The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J Mol Biol 2006, 358, (1), 83-96. 11. Elsen, S.; Jaubert, M.; Pignol, D.; Giraud, E., PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 2005, 57, (1), 17-26. 12. Zeilstra-Ryalls, J. H.; Kaplan, S., Oxygen intervention in the regulation of gene expression: the photosynthetic bacterial paradigm. Cell Mol Life Sci 2004, 61, (4), 417-36. 13. Overmann, J.; Beatty, J. T.; Hall, K. J., Purple Sulfur Bacteria Control the Growth of Aerobic Heterotrophic Bacterioplankton in a Meromictic Salt Lake. Appl Environ Microbiol 1996, 62, (9), 3251-3258. 14. Coolen, M. J.; Overmann, J., Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl Environ Microbiol 1998, 64, (11), 4513-21. 15. Kletzin, A.; Urich, T.; Muller, F.; Bandeiras, T. M.; Gomes, C. M., Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 2004, 36, (1), 77-91. 16. Cantera, J. J.; Kawasaki, H.; Seki, T., The nitrogen-fixing gene (nifH) of Rhodopseudomonas palustris: a case of lateral gene transfer? Microbiology 2004, 150, (Pt 7), 2237-46. 17. Stackebrandt, E.; Fischer, A.; Roggentin, T.; Wehmeyer, U.; Bomar, D.; Smida, J., A phylogenetic survey of budding, and/or prosthecate, non-phototrophic eubacteria: membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter and 'dichotomicrobium' to the alpha-subdivision of purple non-sulfur bacteria. Arch Microbiol 1988, 149, (6), 547-56. 18. Larimer, F. W.; Chain, P.; Hauser, L.; Lamerdin, J.; Malfatti, S.; Do, L.; Land, M. L.; Pelletier, D. A.; Beatty, J. T.; Lang, A. S.; Tabita, F. R.; Gibson, J. L.; Hanson, T. E.; Bobst, C.; Torres, J. L.; Peres, C.; Harrison, F. H.; Gibson, J.; Harwood, C. S., Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 2004, 22, (1), 55-61. 19. Rey, F. E.; Heiniger, E. K.; Harwood, C. S., Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 2007, 73, (5), 1665-71. 20. Pan, C.; Oda, Y.; Lankford, P. K.; Zhang, B.; Samatova, N. F.; Pelletier, D. A.; Harwood, C. S.; Hettich, R. L., Characterization of anaerobic catabolism of p-coumarate in Rhodopseudomonas palustris by integrating transcriptomics and quantitative proteomics. Mol Cell Proteomics 2008, 7, (5), 938-48. 21. Barbosa, M. J.; Rocha, J. M.; Tramper, J.; Wijffels, R. H., Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 2001, 85, (1), 25-33. 22. Mao, X. Y.; Miyake, J.; Kawamura, S., Screening Photosynthetic Bacteria for Hydrogen Production from Organic Acids. Journal of fermentation technology 1986, 64, (3), 245-249. 23. Oda, Y.; Samanta, S. K.; Rey, F. E.; Wu, L.; Liu, X.; Yan, T.; Zhou, J.; Harwood, C. S., Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol 2005, 187, (22), 7784-94. 24. Romagnoli, S.; Tabita, F. R., Phosphotransfer reactions of the CbbRRS three-protein two- component system from Rhodopseudomonas palustris CGA010 appear to be controlled by an internal molecular switch on the sensor kinase. J Bacteriol 2007, 189, (2), 325-35. 25. Du, C.; Zhou, J.; Wang, J.; Yan, B.; Lu, H.; Hou, H., Construction of a genetically engineered microorganism for CO2 fixation using a Rhodopseudomonas/Escherichia coli shuttle vector. FEMS Microbiol Lett 2003, 225, (1), 69-73. 26. Wasinger, V. C.; Cordwell, S. J.; Cerpa-Poljak, A.; Yan, J. X.; Gooley, A. A.; Wilkins, M. R.; Duncan, M. W.; Harris, R.; Williams, K. L.; Humphery-Smith, I., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 1995, 16, (7), 1090-4. 27. Lander, E. S.; Linton, L. M.; Birren, B.; Nusbaum, C.; Zody, M. C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; Funke, R.; Gage, D.; Harris, K.; Heaford, A.; Howland, J.; Kann, L.; Lehoczky, J.; LeVine, R.; McEwan, P.; McKernan, K.; Meldrim, J.; Mesirov, J. P.; Miranda, C.; Morris, W.; Naylor, J.; Raymond, C.; Rosetti, M.; Santos, R.; Sheridan, A.; Sougnez, C.; Stange-Thomann, N.; Stojanovic, N.; Subramanian, A.; Wyman, D.; Rogers, J.; Sulston, J.; Ainscough, R.; Beck, S.; Bentley, D.; Burton, J.; Clee, C.; Carter, N.; Coulson, A.; Deadman, R.; Deloukas, P.; Dunham, A.; Dunham, I.; Durbin, R.; French, L.; Grafham, D.; Gregory, S.; Hubbard, T.; Humphray, S.; Hunt, A.; Jones, M.; Lloyd, C.; McMurray, A.; Matthews, L.; Mercer, S.; Milne, S.; Mullikin, J. C.; Mungall, A.; Plumb, R.; Ross, M.; Shownkeen, R.; Sims, S.; Waterston, R. H.; Wilson, R. K.; Hillier, L. W.; McPherson, J. D.; Marra, M. A.; Mardis, E. R.; Fulton, L. A.; Chinwalla, A. T.; Pepin, K. H.; Gish, W. R.; Chissoe, S. L.; Wendl, M. C.; Delehaunty, K. D.; Miner, T. L.; Delehaunty, A.; Kramer, J. B.; Cook, L. L.; Fulton, R. S.; Johnson, D. L.; Minx, P. J.; Clifton, S. W.; Hawkins, T.; Branscomb, E.; Predki, P.; Richardson, P.; Wenning, S.; Slezak, T.; Doggett, N.; Cheng, J. F.; Olsen, A.; Lucas, S.; Elkin, C.; Uberbacher, E.; Frazier, M.; Gibbs, R. A.; Muzny, D. M.; Scherer, S. E.; Bouck, J. B.; Sodergren, E. J.; Worley, K. C.; Rives, C. M.; Gorrell, J. H.; Metzker, M. L.; Naylor, S. L.; Kucherlapati, R. S.; Nelson, D. L.; Weinstock, G. M.; Sakaki, Y.; Fujiyama, A.; Hattori, M.; Yada, T.; Toyoda, A.; Itoh, T.; Kawagoe, C.; Watanabe, H.; Totoki, Y.; Taylor, T.; Weissenbach, J.; Heilig, R.; Saurin, W.; Artiguenave, F.; Brottier, P.; Bruls, T.; Pelletier, E.; Robert, C.; Wincker, P.; Smith, D. R.; Doucette-Stamm, L.; Rubenfield, M.; Weinstock, K.; Lee, H. M.; Dubois, J.; Rosenthal, A.; Platzer, M.; Nyakatura, G.; Taudien, S.; Rump, A.; Yang, H.; Yu, J.; Wang, J.; Huang, G.; Gu, J.; Hood, L.; Rowen, L.; Madan, A.; Qin, S.; Davis, R. W.; Federspiel, N. A.; Abola, A. P.; Proctor, M. J.; Myers, R. M.; Schmutz, J.; Dickson, M.; Grimwood, J.; Cox, D. R.; Olson, M. V.; Kaul, R.; Raymond, C.; Shimizu, N.; Kawasaki, K.; Minoshima, S.; Evans, G. A.; Athanasiou, M.; Schultz, R.; Roe, B. A.; Chen, F.; Pan, H.; Ramser, J.; Lehrach, H.; Reinhardt, R.; McCombie, W. R.; de la Bastide, M.; Dedhia, N.; Blocker, H.; Hornischer, K.; Nordsiek, G.; Agarwala, R.; Aravind, L.; Bailey, J. A.; Bateman, A.; Batzoglou, S.; Birney, E.; Bork, P.; Brown, D. G.; Burge, C. B.; Cerutti, L.; Chen, H. C.; Church, D.; Clamp, M.; Copley, R. R.; Doerks, T.; Eddy, S. R.; Eichler, E. E.; Furey, T. S.; Galagan, J.; Gilbert, J. G.; Harmon, C.; Hayashizaki, Y.; Haussler, D.; Hermjakob, H.; Hokamp, K.; Jang, W.; Johnson, L. S.; Jones, T. A.; Kasif, S.; Kaspryzk, A.; Kennedy, S.; Kent, W. J.; Kitts, P.; Koonin, E. V.; Korf, I.; Kulp, D.; Lancet, D.; Lowe, T. M.; McLysaght, A.; Mikkelsen, T.; Moran, J. V.; Mulder, N.; Pollara, V. J.; Ponting, C. P.; Schuler, G.; Schultz, J.; Slater, G.; Smit, A. F.; Stupka, E.; Szustakowski, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Wagner, L.; Wallis, J.; Wheeler, R.; Williams, A.; Wolf, Y. I.; Wolfe, K. H.; Yang, S. P.; Yeh, R. F.; Collins, F.; Guyer, M. S.; Peterson, J.; Felsenfeld, A.; Wetterstrand, K. A.; Patrinos, A.; Morgan, M. J.; de Jong, P.; Catanese, J. J.; Osoegawa, K.; Shizuya, H.; Choi, S.; Chen, Y. J., Initial sequencing and analysis of the human genome. Nature 2001, 409, (6822), 860-921. 28. Blackstock, W. P.; Weir, M. P., Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 1999, 17, (3), 121-7. 29. O'Farrell, P. H., High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250, (10), 4007-21. 30. Klose, J., Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975, 26, (3), 231-43. 31. Ducret, A.; Van Oostveen, I.; Eng, J. K.; Yates, J. R., 3rd; Aebersold, R., High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci 1998, 7, (3), 706-19. 32. Bjellqvist, B.; Ek, K.; Righetti, P. G.; Gianazza, E.; Gorg, A.; Westermeier, R.; Postel, W., Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 1982, 6, (4), 317-39. 33. Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice., M. B., Molecular beams of macroions. Journal of Chemical Physics 1968, 49. 34. Meng, C. K.; Mann, M.; Fenn., J. B., Electrospray ionization of some polypeptides and small proteins. In 36th ASMS Conference on Mass Spectrometry and Allied Topics, San Francisco, CA, 1988. 35. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, (4926), 64-71. 36. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Y.Yoshida; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Community of Mass Spectrom 1988, 2, 151-153. 37. Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp., F., Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Phys. 1987, 78, 53-68. 38. Medzihradszky, K. F.; Campbell, J. M.; Baldwin, M. A.; Falick, A. M.; Juhasz, P.; Vestal, M. L.; Burlingame, A. L., The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 2000, 72, (3), 552-8. 39. R.C., B.; B.T., C., Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun. Mass Spectrom 1989, 3, (12), 432-5. 40. K., S.; M., K.; F., H., 2,5-Dihidroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry. Int. J. Mass Spectrom. Ion Processes 1991, 72, (111), 89-102. 41. James, P.; Quadroni, M.; Carafoli, E.; Gonnet, G., Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci 1994, 3, (8), 1347-50. 42. Cottrell, J. S., Protein identification by peptide mass fingerprinting. Pept Res 1994, 7, (3), 115-24. 43. Fields, S.; Song, O., A novel genetic system to detect protein-protein interactions. Nature 1989, 340, (6230), 245-6. 44. Blagoev, B.; Kratchmarova, I.; Ong, S. E.; Nielsen, M.; Foster, L. J.; Mann, M., A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 2003, 21, (3), 315-8. 45. Yu, H.; Luscombe, N. M.; Lu, H. X.; Zhu, X.; Xia, Y.; Han, J. D.; Bertin, N.; Chung, S.; Vidal, M.; Gerstein, M., Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res 2004, 14, (6), 1107-18. 46. Kulesh, D. A.; Clive, D. R.; Zarlenga, D. S.; Greene, J. J., Identification of interferon-modulated proliferation-related cDNA sequences. Proc Natl Acad Sci U S A 1987, 84, (23), 8453-7. 47. Schena, M.; Shalon, D.; Davis, R. W.; Brown, P. O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, (5235), 467-70. 48. Schena, M.; Shalon, D.; Heller, R.; Chai, A.; Brown, P. O.; Davis, R. W., Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A 1996, 93, (20), 10614-9. 49. Lashkari, D. A.; DeRisi, J. L.; McCusker, J. H.; Namath, A. F.; Gentile, C.; Hwang, S. Y.; Brown, P. O.; Davis, R. W., Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A 1997, 94, (24), 13057-62. 50. Ishkanian, A. S.; Malloff, C. A.; Watson, S. K.; DeLeeuw, R. J.; Chi, B.; Coe, B. P.; Snijders, A.; Albertson, D. G.; Pinkel, D.; Marra, M. A.; Ling, V.; MacAulay, C.; Lam, W. L., A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 2004, 36, (3), 299-303. 51. Rey, F. E.; Oda, Y.; Harwood, C. S., Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris. J Bacteriol 2006, 188, (17), 6143-52. 52. Gosse, J. L.; Engel, B. J.; Rey, F. E.; Harwood, C. S.; Scriven, L. E.; Flickinger, M. C., Hydrogen Production by Photoreactive Nanoporous Latex Coatings of Nongrowing Rhodopseudomonas palustris CGA009. Biotechnol Prog 2007, 23, (1), 124-130. 53. MASCOT. http://www.matrixscience.com 54. the GPM site. 55. Romagnoli, S.; Tabita, F. R., A novel three-protein two-component system provides a regulatory twist on an established circuit to modulate expression of the cbbI region of Rhodopseudomonas palustris CGA010. J Bacteriol 2006, 188, (8), 2780-91. 56. VerBerkmoes, N. C.; Shah, M. B.; Lankford, P. K.; Pelletier, D. A.; Strader, M. B.; Tabb, D. L.; McDonald, W. H.; Barton, J. W.; Hurst, G. B.; Hauser, L.; Davison, B. H.; Beatty, J. T.; Harwood, C. S.; Tabita, F. R.; Hettich, R. L.; Larimer, F. W., Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. J Proteome Res 2006, 5, (2), 287-98. 57. Joloba, M. L.; Clemmer, K. M.; Sledjeski, D. D.; Rather, P. N., Activation of the gab operon in an RpoS-dependent manner by mutations that truncate the inner core of lipopolysaccharide in Escherichia coli. J Bacteriol 2004, 186, (24), 8542-6. 58. Wang, N.; Gottesman, S.; Willingham, M. C.; Gottesman, M. M.; Maurizi, M. R., A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci U S A 1993, 90, (23), 11247-51. 59. Chow, K. C.; Tung, W. L., Overexpression of dnaK/dnaJ and groEL confers freeze tolerance to Escherichia coli. Biochem Biophys Res Commun 1998, 253, (2), 502-5. 60. Puskas, L. G.; Inui, M.; Zahn, K.; Yukawa, H., A periplasmic, alpha-type carbonic anhydrase from Rhodopseudomonas palustris is essential for bicarbonate uptake. Microbiology 2000, 146 ( Pt 11), 2957-66. 61. Takemoto, T.; Zhang, Q. M.; Yonei, S., Different mechanisms of thioredoxin in its reduced and oxidized forms in defense against hydrogen peroxide in Escherichia coli. Free Radic Biol Med 1998, 24, (4), 556-62. 62. Poon, W. W.; Davis, D. E.; Ha, H. T.; Jonassen, T.; Rather, P. N.; Clarke, C. F., Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis. J Bacteriol 2000, 182, (18), 5139-46. 63. Goloubinoff, P.; Gatenby, A. A.; Lorimer, G. H., GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 1989, 337, (6202), 44-7. 64. Lu, S. C., S-Adenosylmethionine. Int J Biochem Cell Biol 2000, 32, (4), 391-5. 65. Russel, M., Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 1998, 279, (3), 485-99. 66. Cascales, E.; Christie, P. J., The versatile bacterial type IV secretion systems. Nat Rev Microbiol 2003, 1, (2), 137-49. 67. Rippka, R.; Neilson, A.; Kunisawa, R.; Cohen-Bazire, G., Nitrogen fixation by unicellular blue-green algae. Arch Mikrobiol 1971, 76, (4), 341-8. 68. Fejes, A. P.; Yi, E. C.; Goodlett, D. R.; Beatty, J. T., Shotgun proteomic analysis of a chromatophore-enriched preparation from the purple phototrophic bacterium Rhodopseudomonas palustris. Photosynth Res 2003, 78, (3), 195-203. 69. Roszak, A. W.; Howard, T. D.; Southall, J.; Gardiner, A. T.; Law, C. J.; Isaacs, N. W.; Cogdell, R. J., Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. In 2003; Vol. 302, pp 1969 - 72. 70. Jaubert, M.; Zappa, S.; Fardoux, J.; Adriano, J. M.; Hannibal, L.; Elsen, S.; Lavergne, J.; Vermeglio, A.; Giraud, E.; Pignol, D., Light and redox control of photosynthesis gene expression in Bradyrhizobium: dual roles of two PpsR. J Biol Chem 2004, 279, (43), 44407-16. 71. Weckesser, J.; Drews, G.; Mayer, H., Lipopolysaccharides of photosynthetic prokaryotes. Annu Rev Microbiol 1979, 33, 215-39. 72. Checa, S. K.; Viale, A. M., The 70-kDa heat-shock protein/DnaK chaperone system is required for the productive folding of ribulose-biphosphate carboxylase subunits in Escherichia coli. Eur J Biochem 1997, 248, (3), 848-55. 73. Dickson, R.; Larsen, B.; Viitanen, P. V.; Tormey, M. B.; Geske, J.; Strange, R.; Bemis, L. T., Cloning, expression, and purification of a functional nonacetylated mammalian mitochondrial chaperonin 10. J Biol Chem 1994, 269, (43), 26858-64. 74. Landry, S. J.; Bartlett, S. G., The small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its precursor expressed in Escherichia coli are associated with groEL protein. J Biol Chem 1989, 264, (15), 9090-3. 75. Harrison, F. H. http://www.jgi.doe.gov/ 76. www.cytoscape.org | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40914 | - |
| dc.description.abstract | Rhodopseudomonas palustris (R. palustris) (沼澤紅假單胞菌)為紫色非硫光合菌的一種,可生活於各種不同的代謝環境;在自然環境中,廣泛分布於土壤與河水中。R. palustris可利用日光或是自然環境中的各種有機與無機物做為能量的來源,並利用大氣中的二氧化碳或是綠色植物衍生物做為碳源。除此之外特別的是,R. palustris尚可在行固氮作用時,產生氫氣做為其副產物。R. palustris也可以藉由調整自身的基因表現,使其能夠在各種不同的光源、碳源、氮源及不同電子來源的環境生存。在本研究中,我們使用了蛋白質二維電泳合併質譜儀研究 R. palustris不同代謝情況的蛋白質體表現;以及利用微陣列晶片研究其基因表現。我們的結果發現,在沼澤紅假單胞菌的四種不同代謝環境:光合自營、光合異營、化學自營、化學異營中,有38 個蛋白質產生變化。在化學自營和光合自營中比較,有 1357 個基因表現差異、光合自營和化學自營有 1629 個基因表現差異、化學異營和化學異營有 2512 個基因表現差異、光合異營和化學異營中有 168 個基因表現差異。有些蛋白質,像是60kDa chaperonin2、ABC transporters 相關蛋白質、PEPCK、catalase和phosphoglycerate dehydrogenase在三種以上的代謝條件均有表現,ABC transporter 並和自營與異營的調控相關。將這些結果利用蛋白質-蛋白質交互作用網路預測,發現60kDa chaperonin 2、transcription terminator rho、acyl-CoA dehydrogenase、S-adenosylmethionine synthetase、alcohol dehydrogenase扮演了重要的角色,甚至60kDa chaperonin 2 被預測和許多 ABC transporter 的蛋白質有交互作用的關係。根據這些變化,我們可以進一步了解光合細菌在不同代謝環境下的調控機制。 | zh_TW |
| dc.description.abstract | Rhodopseudomonas palustris (R. palustris), a purple nonsulfur bacteria, is among the most metabolically versatile bacteria and ubiquitous in soil and water. The microbe could use sunlight, organic or inorganic compound for cellular energy, and use atmosphere carbon dioxide, or green plant-derived compound for cell material. It also could produce hydrogen gas by biological nitrogen fixation. The microbe could adjust and reweave itself in response to changes in light, carbon, nitrogen and electron sources. The ability of R. palustris to use carbon dioxide depends on two metabolic states: photoautotrophic and chemoautotrophic state. In this study, we used microarray for transcriptomic study, and two-dimensional polyacrylamide gel electrophoresis and mass spectrometry for proteomic study, respectively. Our results showed that 1357, 2512, 1629, 168 genes were differentially expressed over two-fold in photoautotrophic verus chemoautotrophic conditions, chemoautotrophic versus chemoheterotrophic conditions, photoautotrophic versus photoheterotrophic conditions, and chemoheterotrophic versus photoheterotrophic conditions, respectively. We identified 38 proteins differentially expressed over two-fold between two of the four major metabolic states. Some proteins, such as 60kDa chaperonin 2, ABC transporter related proteins, phosphoenolpyruvate carboxykinase, catalase, and phosphoglycerate dehydrogenase, could differentially expressed in three of these four major metabolic states. Interestingly, ABC transporter pathway was related to switch of autotroph and heterotroph. With computational prediction of plausible protein-protein interactions among these 38 proteins, we found 60kDa chaperonin 2, transcription terminator rho, acyl-CoA dehydrogenase, S-adenosylmethionine synthetase, alcohol dehydrogenase were the hub proteins in the predicted interaction network. These findings help us understand the regulatory mechanism of R. palustris. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:06:30Z (GMT). No. of bitstreams: 1 ntu-97-R95b43035-1.pdf: 5866059 bytes, checksum: 2cbd20940399fc80d8fc4d855d7469b7 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 III 英文摘要 IV 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 前言 1 1.1 光合作用與光合細菌 1 1.2 代謝多樣性 1 1.3 紫色細菌 (Purple bacteria) 2 1.3.1 紫色含硫光合細菌 (Purple sulfur bacteria) 3 1.3.2 紫色非硫光合細菌 (Purple non-sulfur photosynthetic bacteria) 3 1.3.3 沼澤假單胞菌 (Rhodopseudomonas palustris) 4 1.4 蛋白質體學簡介 6 1.4.1 蛋白質體學研究 6 1.4.2 二維凝膠電泳法(two-dimensional gel electrophoresis ) 7 1.4.3 質譜分析方法簡介 7 1.4.4 蛋白質交互作用 (Protein-Protein Interaction) 8 1.5 微陣列晶片分析 9 第二章 實驗流程 11 2.1 實驗目的 11 2.2 實驗流程 11 第三章 實驗方法 12 3.1 藥品與儀器 12 3.1.1 研究材料 12 3.1.2 藥品 12 3.1.3 儀器 14 3.2 養菌基本操作 15 3.2.1 PM 培養基配方 16 3.2.2 Luria-Bertani 培養基 20 3.3 蛋白質體學分析 21 3.3.1 蛋白質定量 21 3.3.2 蛋白質二維電泳 22 3.3.3 影像分析 27 3.3.4 In-gel digestion 29 3.3.5 MALDI-TOF MS及MASCOT 29 3.4 微陣列分析 31 3.4.1 總RNA萃取與純化 31 3.4.2 將RNA轉成cDNA並標定螢光 32 3.4.3 微陣列晶片實驗 34 3.4.4 GeneSpring 軟體分析 36 3.5 穿透式電子顯微鏡操作 37 第四章 結果與討論 38 4.1 細菌形態結果 38 4.2 蛋白質結果 39 4.2.1 光合自營和光合異營之比較 40 4.2.2 光合自營與化學自營之比較 40 4.2.3 光合異營與化學異營之比較 41 4.2.4 化學自營與化學異營之比較 41 4.2.5 蛋白質交互作用網路之預測 42 4.2.6 重要蛋白質探討 43 4.3 微陣列結果 43 第六章 未來展望 48 參考資料 49 附錄 88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 系統生物學 | zh_TW |
| dc.subject | 蛋白質二維電泳 | zh_TW |
| dc.subject | Rhodopseudomonas palustris | zh_TW |
| dc.subject | 微陣列晶片 | zh_TW |
| dc.subject | 光合細菌 | zh_TW |
| dc.subject | 蛋白質體學 | zh_TW |
| dc.subject | Rhodopseudomonas palustris | en |
| dc.subject | two-dimensional electrophoresis | en |
| dc.subject | microarray | en |
| dc.subject | systems biology | en |
| dc.subject | proteomics | en |
| dc.subject | purple non-sulfur bacteria | en |
| dc.title | 光合菌於各種代謝環境下之系統生物學研究 | zh_TW |
| dc.title | Systems Analysis of Rhodopseudomonas palustris in Different Metabolic States | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃宣誠(Hsuan-Cheng Huang),陳水田(Shui-Tein Chen),陳仁治(Jen-Chih Chen) | |
| dc.subject.keyword | Rhodopseudomonas palustris,光合細菌,蛋白質二維電泳,微陣列晶片,蛋白質體學,系統生物學, | zh_TW |
| dc.subject.keyword | Rhodopseudomonas palustris,purple non-sulfur bacteria,two-dimensional electrophoresis,microarray,proteomics,systems biology, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-29 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 5.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
