請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張正憲(Jeng-Shian Chang) | |
| dc.contributor.author | Yi-Mei Chiou | en |
| dc.contributor.author | 邱憶梅 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:06:27Z | - |
| dc.date.available | 2008-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-28 | |
| dc.identifier.citation | [1] 朱信彰. 利用非穩態流場特性開發微粒子分離器之研究. 應用力學硏究所 (國立臺灣大學, 台北,台灣, 2006).
[2] 李青峻. 以非穩態流場開發多功能微流體裝置之研究. 應用力學研究所 (國立台灣大學, 台北,台灣, 2007). [3] Herbert A. Pohl, “Dielectrophoresis”, Cambridge University Press, Cambridge, UK, (1978). [4] Pethig, R., Huang, Y., Wang, X.-B. and Burt, J.P.H., “Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes”, Journal of Physics D: Applied Physics, pp.881-888, (1992). [5] Kunitoshi Yamamoto, Seiji Akita and Yoshikazu Nakayama., “Rapid Communication Orientation and Purification of Carbon Nanotubes Using AC Electrophoresis”, J. Phys., D 31, L34,(1998). [6] Jaemin An, Jangwon Lee, Youngho Kim, Byungkyu Kim, and Sangho Lee, “Analysis of Cell Separation Efficiency in Dielectrophoresis- Activated Cell Sorter”, Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, pp.965-969, (2008). [7] Harris, N.R., Hill, M., Beeby, S., Shen, Y., White, N.M., Hawkes, J.J. and Coakley, W.T. “A silicon microfluidic ultrasonic separator”, Sensor and Actuators B:Chemical,95(1-3), pp. 425-434, (2003). [8] Harris, N., Hill, M., Shen, Y., Townsend, R.J., Beeby, S. and White, N. “A dual frequency, ultrasonic, microengineered particle manipulator”, Ultrasonics,42(1-9), pp. 139-144, (2004). [9] Petersson, F., Nilsson, A., Holm, C., Henrik, J. and Laurell, T., “Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels”, Analyst, 129, pp.938-943, (2004). [10] Petersson, F., Nilsson, A., Holm, C., Jonsson, H. and Laurell, T. “Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces”, Lab Chip, 5, pp.20-22, (2005). [11] Yamada, M., Kasim, V., Nakashima, M., Edahiro, J.i. and Seki, M., “Continuous cell partitioning using an aqueous two-phase flow system in micro fluidic devices”, Biotechnology and Bioengineering, 88(4), pp.489-494, (2004). [12] Yamada, M., Nakashima, M. and Seki, M., “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched micro channel”, Analytical Chemistry, 76(18), pp.5465-5471, (2004). [13] Yamada, M. and Seki, M., “Hydrodynamic filtration for on-chip particle concentration and classification utilizing micro fluidics”, Lab Chip, 5(11), pp.1233-1239, (2005). [14] STOKE,G. G., “On the effect of the internal friction of fluids on the motion of pendulums”, Trans Cam.Phil.Soc.,9(8), (1851). [15] KHAN, A. R. and RICHARDSON, J. F., “The resistance to motion of a solid sphere in a fluid”, Chem. Eng. Comm., 62, pp.135-150, (1987). [16] Uchida, S., “The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe”, Z. angew. Math. Phys, 7(153), pp.403-422, (1956). [17] Womersley, J.R. “Method for the calculation of velocity, rate flow, and viscous drag in arteries when the pressure gradient is known ” , Journal of Physiology, Vol 127, pp. 553–563, (1955). [18] Schlichting, H. Boundary-layer theory (McGraw-Hill, New York, 1979). [19] White, F.M. Fluid Mechanics. (McGraw-Hill, New York, 1979). [20] Lee, C.J., Sheen, H.J., Chu, H.C., Hsu, C.J. and Wu, T.H., “The development of a triple-channel separator for particle removal with self-pumping oscillating flow”, Journal of Micromechanics and Microengineering, 17(3), pp.439-446, (2007). [21] C.J. Lee, and H.J. Sheen “Development of a Multifunctional Microfluidic device utilizing unsteady flow “, The Sixth International Conference on Nanochannels, Microchannels, and Minichannels (ICNMM), Darmstadt, Germany, (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40913 | - |
| dc.description.abstract | 本研究為三岔型粒子分離器內部非穩態流場之二維數值模擬。在分析過程中,入口處基態流場假設為均勻流加上週期性的震盪流場,分析模型的外型主要概分為兩部分:一輸入流道加上三岔型分離流道。此模型在三岔口處會產生渦流使粒子往兩側輸出流道移動而與流體分離。
首先本研究參考文獻中的實驗操作參數,諸如入口層流的平均流速、流場震盪的頻率、兩側流道的張角角度和中央輸出流道的長度;然後對流場作完整的分析,之後再藉由改變參數的組合,觀察流場變化來推論粒子分離之物理機制。同時亦能得到最佳化的參數以及提供粒子分離的實驗裝置之參考。 最後根據本研究數值模擬的結果得知,此裝置在粒子分離機制上最主要的兩個因素為:主流道的Ka值至少為5.72以上(Ka為一震盪流場中的無因次參數);並且中央輸出流道要短於兩側輸出流道。 | zh_TW |
| dc.description.abstract | This study mainly simulates two dimensional behavior of an unsteady-flow particle separator with triple outlet channels. The geometry of this device was referred to the previous study. During the analysis, we regard the flow field as the combination of laminar flow and periodic oscillating flow. The analytic models, in principle, are divided by two components, which are the main channel and trifurcate zone. When the inlet is subjected to the oscillating velocity profile, there will be two vortices which are generated upstream of the center channel. The vortices will increase the flow resistance of the center channel, and rotating directions of the vortices are able to lead the particles to move toward the side channels.
First of all, the flow phenomenon of the particle separator was observed at 1/16 step in the whole period. Secondly, the flow fields of the particle separator were investigated in various parameters, such as the flow velocity, oscillating frequency, the incline angle between the two side channels and the length of the center channel. Base on the results of this simulation, two important separating factors of this device were obtained. The dimensionless factor of the flow field, Ka, should be above 5.72, and the length of the center channel should be shorter than the side channel. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:06:27Z (GMT). No. of bitstreams: 1 ntu-97-R95543037-1.pdf: 8488361 bytes, checksum: 0461ef45948746195b0a5501003f331f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目次 IV 圖目錄 VI 第一章緒論 1 1-1研究背景與動機 1 1-2文獻回顧 2 1-3研究目的 4 第二章 理論基礎 5 2-1基本假設 5 2-2模型簡介 6 2-3統御方程式 6 2-4邊界條件 8 2-5建立模型網格 8 2-6收斂測試 9 2-7振盪流場原理 10 第三章 數值模擬:結果與討論 14 3-1模型驗證 14 3-2一週期流場變化之探討 15 3-3改變平均流速α 28 3-4改變震盪頻率 36 3-5改變流道張角φ 52 3-6改變流道長度L 65 第四章結論與展望 90 4-1結論 90 4-2展望 91 參考文獻 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 三岔型流道 | zh_TW |
| dc.subject | 粒子分離器 | zh_TW |
| dc.subject | 週期性振盪流場 | zh_TW |
| dc.subject | periodic oscillating flow | en |
| dc.subject | triple outlet channel | en |
| dc.subject | particle separator | en |
| dc.title | 三岔式非穩態流場粒子分離器之數值模擬 | zh_TW |
| dc.title | The Numerical Simulation of An Unsteady-Flow Particle
Separator With Triple Outlet Channel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙聖德(Sheng-Der Chao),沈弘俊(Horn-Jiunn Sheen),吳光鐘(Kuang-Chong Wu),翁宗賢(Tzong-Shyan Wung) | |
| dc.subject.keyword | 粒子分離器,週期性振盪流場,三岔型流道, | zh_TW |
| dc.subject.keyword | particle separator,periodic oscillating flow,triple outlet channel, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 8.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
