Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40907
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林法勤
dc.contributor.authorYing-Li Tsaien
dc.contributor.author蔡穎麗zh_TW
dc.date.accessioned2021-06-14T17:06:10Z-
dc.date.available2010-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation中國國家標準CNS 12514(2002)建築物構造部分耐燃檢驗法。經濟部標準檢驗局。6頁。
中國國家標準CNS 4748(1991)原木,製材之分等,經濟部標準局檢驗局。3頁。
王松永(1982)造林木之材質與利用。林產工業1(1):69-78。
王松永(1985)柳杉及杉木之材質與利用(Ⅰ)。林產工業4(4):79-88。
王松永(1986)柳杉及杉木之材質與利用(Ⅱ)。林產工業5(1):66-76。
王松永(1999)促進疏伐中小徑木之用途開發。人工林生態系永續經營與利用研討會論文集:65-82。
王松永(2001)木材及木質材料之防耐燃性能之賦予。木質建築:1-15。
王松永、丁昭義 (1992) 林產學上冊。台北:台灣商務印書館。639頁。
王松永、林振榮、施能毅(1992)杉木及柳杉造林木之品等與製材率之探討,拓展林產品加工利用之研究論文發表及技術轉移研討會論文集:1-22。
林法勤(1992)柳杉栽植距對其基本力學性質之影響。國立台灣大學森林學研究所碩士論文。66頁。
邱志明(1987)柳杉種子苗林木與插條苗林木生長與材質之研究。國立台灣大學森林學研究所博士論文。
莊鴻濱(2000)耐燃藥劑的分佈與吸收量對木材耐燃性能與強度性質的影響。國立臺灣大學森林學硏究所,博士論文。
莊鴻濱、王松永(1998)節對實木與合板表面燃燒性質的影響,林產工業,17(4):709-722。
陳儷芬(2004)臺灣傳統建築彩畫修護制度之研究。中原大學文化資產研究所碩士學位論文。116頁。
黃金城、林翰謙(2001)木材燃燒特性與防火處理技術。木構造耐震安全性相關國家標準草案研擬研討會論文集。嘉義:59-89。
楊德新(2007)中小徑木製造構造用集成材及其工程性質之研究。國立台灣大學森林學研究所博士論文。155頁。
劉正字(1991)林產工業辭典。中華民國林產事業協會:274。
劉凌沖(2003)天然漆灰地性能試驗及應用之研究。國立雲林科技大學文化資產維護研究所碩士論文。127頁。
蔡明哲(1997)古蹟大木構材腐蝕破壞之評估。民俗文物及古蹟生物腐蝕與防治:133-148。
蘇玲香(1996)台灣傳統建築彩畫之施工技術之調查研究。第六次古蹟修護技術研討會專輯:109-120。
石原茂久(1989)木材之科學の利用技術,日本木材學會:137-154。
AITC (2004) Superior fire resistance. OT-04. American Institute of Timber Construction.
ASTM E119-96 (1996) Standard Method of Fire Endurance Tests of Building Construction and Materials: Philadelphia, PA.
EC5. (1994) Eurocode 5: Design of Timber Structures. ENV 1995-1-2. CEN: Brussels, Belgium.
Hadvig S (1981) Charring of wood in building fires. Lyngby: Technical University of Denmark.
Hayashi T, Miyatake A, Fu F, Kato H, Karube M, Harada M (2005) Outdoor exposure tests of structural laminated veneer lumber (II): evaluation of the strength properties after nine years. J Wood Sci.51:486-491.
Hayashi T, Miyatake A, Harada H (2002) Outdoor exposure tests of structural laminated veneer lumber I:evaluation of the physical properties after six years. J Wood Sci.48:69-74.
Lie T (1977) A method for assessing the fire resistance of laminated timber beams and columns. Canadian Journal of Civil Engineering 4:161-169.
Schaffer EL (1967) Charring rate of selected woods—transverse to grain. U. S. Forest Service Research Paper FPL 69. 23pp.
Sweet MS (1993) Fire performance of wood: Test methods and fire retardant treatments. Proceedings of 4th annual BCC conference on flame retadancy, p36-43.
Truax TR (1959) Fire research and results at US forest products Laboratory. United States Forest Service Research Report No.1999, Madison, WI.
Wang SY, Chiu CM (1988) The wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan Ⅲ:The variation of microfibril angles of tracheids. Mokuzai Gakkaishi, 34(11):881-888.
Wang SY, Chiu CM (1988) The wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan Ⅳ:The variation of degree of crystallinity of cellulose, Mokuzai Gakkaishi, 34(11): 909-916.
Wang SY, Chiu CM (1993) Variation of the modulus of toughness and wind resistance of Taiwan-grown Japanese cedar originated by seed and vegetative reproduction, Mokuzai Gakkaishi, 39(7):831-836.
Wang SY, Chiu CM (1993) Wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan Ⅳ:Compression and bending properties, Mokuzai Gakkaishi, 39(10):1128-1139.
Wang SY, Ko CY (1998) Dynamic modulus of elasticity and bending properties of large beams of Taiwan-grown Japanese cedar from different plantation spacing sites. Journal of Wood Science, 44:62-68.
Wang SY, Lin SH (1996) Effects of plantation spacing on the quality of visually graded lumber and mechanical properties of Taiwan-grown Japanese cedar, Mokuzai Gakkaishi, 42(5):435-444.
White RH, Dietenberger MA (1999) Fire safety. Wood handbook – Wood as engineering material. Gen. Tech. Rep.FPL-GTR-113. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40907-
dc.description.abstract本研究主要是利用國產造林木中小徑木台灣杉、柳杉與杉木,其中將台灣杉、柳杉與杉木製成圓形斷面木樑,徑級分別為20 cm、25 cm與30 cm三種,以CNS 12514標準進行60 min與30 min之樑構件燃燒試驗。杉木則另以披麻捉灰再製成披麻捉灰處理材,徑級為20 cm、25 cm與30 cm,進行30 min之燃燒試驗;及利用孔廟替換下來的杉木古蹟腐朽材,徑級20 cm,進行30 min之燃燒試驗以探討其耐火特性。
研究結果顯示健全材方面底部平均炭化速率為台灣杉(0.80 mm/min)>柳杉(0.79 mm/min)>杉木(0.74 mm/min);台灣杉與杉木之炭化速率會隨密度增加而下降,但柳杉的趨勢不一樣。斷面尺寸方面,徑級越大燃燒速率越大,即炭化速率均會隨原木之徑級增大而略為增加。一般來說節的密度會較大,而密度為影響炭化深度的主要原因,本研究結果指出節的炭化深度明顯小於健全材平均炭化深度。
杉木各處理材方面的平均炭化速率為古蹟腐朽材(1.31 mm/min)>披麻捉灰材(0.83 mm/min)>健全材(0.74 mm/min);古蹟腐朽材的炭化速率較高,主要原因為其表面已經不同程度的嚴重腐朽,故炭化速率較快。腐朽炭化速率結果側部在1.13-4.18mm/min,為健全材的2-7倍;底部在0.87-2.14mm/min,為健全材的1-3倍。只有底部的腐朽炭化速率會隨腐朽率增加而增大,側部並不明顯。
此外再以四次式來推估其斷面輪廓炭化形狀,求得健全材之斷面形狀輪廓推估圖,可得知其燃燒時間為30 min時斷面形狀接近圓形,燃燒時間60 min時斷面型狀近似水滴型;且底部炭化深度較上部嚴重。杉木健全材與杉木披麻捉灰材的斷面輪廓模擬圖中,杉木披麻捉灰材的炭化較健全材嚴重,且斷面形狀都近似圓形,而模擬輪廓在兩側均較不符合,頂部與底部較適合此模型。杉木古蹟腐朽材燃燒時間為30 min之斷面輪廓模擬圖極不適合,故四次式模型仍需進一步修正。
zh_TW
dc.description.abstractThe purpose of this study was to investigate the fire performance of beam with circular cross section from Taiwania, Japanese cedar and China fir. First of all, three different diameters, 20 cm, 25 cm, and 30 cm of three species, were tested under 30 min and 60 min by CNS 12514. Further, China fir logs were treated with a traditional method called “Pi-Ma-Jou-Huei” which applied linen with paste of pig blood-mortar on member surface then painted with color drawing for avoiding biological and physical decaying, and also made into three different diameters 20 cm, 25 cm, and 30 cm, and were tested under 30 min by CNS 12514. Finally six decay logs of China fir which tore down from Confucian Temple, Taipei, in 2002. Their diameter was 20 cm and were tested under 30 min by CNS 12514.
The results indicated that the charring rate of sound logs at bottom position showed a decreasing order in Taiwania (0.80 mm/min) > Japanese cedar (0.79 mm/min) > China fir(0.74 mm/min). The charring rate of Taiwania logs and China fir logs increased with diameter increasing. Generally, the density was the main reason to effect on the charring rate, and the results show that the charring depth of knots was obviously smaller than that of sound logs.
The charring rate of China fir logs with different treatments at the bottom position showed a decreasing order in Decay logs (1.31 mm/min) > Pi-Ma-Jou-Huei logs (0.83 mm/min) > Sound logs (0.74 mm/min). The charring rate of decay logs was the largest because there were seriously decayed on the surface. The charring rate of decay part at the bottom increased with decay proportion increasing, but the trend was not significant at side position. The charring rate of decay part at side position was 1.13-4.18 mm/min, about 2-7 times of sound logs while it at the bottom position was 0.87-2.14 mm/min, about 1-3 times of sound logs.
In addition, a quartic-equation was derived to profile charring cross section. The sound logs’ profile was still like circular form when it tested under 30 min, and it like a droplet form when it tested under 60 min. The charring depth was the largest at the bottom position than it at any other position. The profiles of sound logs and Pi-Ma-Jou-Huei logs of China fir were also like circular form also, however, the charring depth of Pi-Ma-Jou-Huei logs was larger than that of sound logs. The profile was not match the cross section of decay log, so the quartic equation needs to be modified in order.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:06:10Z (GMT). No. of bitstreams: 1
ntu-97-R95625009-1.pdf: 6231509 bytes, checksum: 83079b5b4fe1336cad453ed0117658c5 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員審定書
誌謝
中文摘要......................................................................................................................Ⅰ
英文摘要......................................................................................................................Ⅱ
第一章、前言............................................................................................................... 1
第二章、文獻回顧....................................................................................................... 4
2.1木材的著火與燃燒................................................................................................. 4
2.2火災進行過程......................................................................................................... 5
2.3相關規範................................................................................................................. 6
2.3.1歐洲木構造建築規範...........................................................................................6
2.3.2美國國家設計規範...............................................................................................7
2.3.3日本建築法規.......................................................................................................7
2.4燃燒相關試驗..........................................................................................................7
2.5木構件之劣化..........................................................................................................8
2.6非破壞檢測..............................................................................................................8
2.7披麻捉灰..................................................................................................................9
第三章 試驗材料與方法..........................................................................................13
3.1 試驗材料...............................................................................................................13
3.2 試驗方法...............................................................................................................15
3.2.1基本性質測定.....................................................................................................15
3.2.2目視分等.............................................................................................................15
3.2.3表面含水率測定.................................................................................................15
3.2.4 Pilodyn®木材表面穿孔抵抗深度之測定.........................................................18
3.2.5 SYLVATEST®超音波儀檢測............................................................................20
3.2.6打音法檢測.........................................................................................................21
3.2.7阻抗圖譜儀(Resistograph)技術檢測..................................................................22
3.2.8燃燒試驗.............................................................................................................23
3.2.9炭化速率之測定.................................................................................................25
3.2.10節的炭化速率之測定.......................................................................................26
3.2.11古蹟腐朽材表面腐朽炭化速率之測定............................................................27
3.2.11.1阻抗圖譜儀分析軟體.....................................................................................27
3.2.11.2古蹟腐朽材表面腐朽炭化速率之推算.........................................................28
3.2.12炭化斷面輪廓之推估.......................................................................................29
第四章 結果與討論..................................................................................................31
4.1基本性質................................................................................................................31
4.1.1目視分等.............................................................................................................31
4.1.2試材密度.............................................................................................................33
4.1.2.1 健全材.............................................................................................................33
4.1.2.2 杉木處理材.....................................................................................................35
4.1.2.3 古蹟腐朽材.....................................................................................................38
4.1.3 Pilodyn®木材表面穿孔抵抗深度之測定.........................................................39
4.1.3.1健全材..............................................................................................................39
4.1.3.2杉木處理材......................................................................................................40
4.1.3.3古蹟腐朽材......................................................................................................40
4.1.4表面含水率.........................................................................................................41
4.1.4.1健全材..............................................................................................................41
4.1.4.2杉木處理材......................................................................................................42
4.1.4.3古蹟腐朽材......................................................................................................43
4.1.5 動彈性係數(DMOE).......................................................................................44
4.1.5.1健全材..............................................................................................................44
4.1.5.2杉木處理材......................................................................................................45
4.1.5.3古蹟腐朽材......................................................................................................47
4.2 健全材之耐火性質...............................................................................................48
4.2.1平均炭化深度與平均炭化速率.........................................................................50
4.2.2平均炭化速率與不同位置之相關性.................................................................53
4.2.3平均炭化速率於不同分組方式與徑級之相關性.............................................55
4.2.3.1將四個位置視為有差異分四組來討論..........................................................56
4.2.3.2分側部與下部兩組討論..................................................................................58
4.2.3.3將四個位置視為無差異分一組討論..............................................................59
4.2.4平均炭化速率與不同時間之相關性.................................................................62
4.2.5平均炭化速率與密度之相關性.........................................................................65
4.3 節之耐火性質.......................................................................................................67
4.3.1節之大小.............................................................................................................67
4.3.2節對炭化速率的影響.........................................................................................68
4.4 杉木處理之耐火性質...........................................................................................70
4.4.1平均炭化深度與平均炭化速率.........................................................................70
4.4.2平均炭化速率與不同位置之相關性.................................................................74
4.4.3平均炭化速率於不同徑級之相關性.................................................................75
4.4.4平均炭化速率與密度之相關性.........................................................................77
4.4.5古蹟腐朽材腐朽部位之炭化速率推估.............................................................78
4.5 炭化斷面輪廓之推估...........................................................................................79
第五章、結論................................................................................................................85
參考文獻......................................................................................................................87
dc.language.isozh-TW
dc.subject圓形斷面木樑zh_TW
dc.subject燃燒zh_TW
dc.subject披麻捉灰zh_TW
dc.subject炭化速率zh_TW
dc.subject斷面輪廓模擬zh_TW
dc.subjectCharring rateen
dc.subjectWooden beam with circular cross sectionen
dc.subjectProfile of cross sectionen
dc.subjectFire performanceen
dc.subjectPi-Ma-Jou-Hueien
dc.title圓形斷面木樑燃燒試驗之炭化特性zh_TW
dc.titleCharring Properties of Round Log Beam under Fire Testen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王松永,陳載永,林慶元,卓志隆
dc.subject.keyword燃燒,披麻捉灰,炭化速率,斷面輪廓模擬,圓形斷面木樑,zh_TW
dc.subject.keywordFire performance,Pi-Ma-Jou-Huei,Charring rate,Profile of cross section,Wooden beam with circular cross section,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2008-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
6.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved