Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40899
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群
dc.contributor.authorYi-Chun Yehen
dc.contributor.author葉怡君zh_TW
dc.date.accessioned2021-06-14T17:05:45Z-
dc.date.available2010-07-30
dc.date.copyright2008-07-30
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citationAsahina, M., Valenta, T., Silhankova, M., Korinek, V., and Jindra, M. (2006). Crosstalk between a nuclear receptor and beta-catenin signaling decides cell fates in the C. elegans somatic gonad. Dev Cell 11, 203-211.
Blelloch, R., Anna-Arriola, S.S., Gao, D., Li, Y., Hodgkin, J., and Kimble, J. (1999). The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Dev Biol 216, 382-393.
Blelloch, R., and Kimble, J. (1999). Control of organ shape by a secreted metalloprotease in the nematode Caenorhabditis elegans. Nature 399, 586-590.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Corish, P., and Tyler-Smith, C. (1999). Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12, 1035-1040.
Cox, E.A., Tuskey, C., and Hardin, J. (2004). Cell adhesion receptors in C. elegans. J Cell Sci 117, 1867-1870.
Cram, E.J., Shang, H., and Schwarzbauer, J.E. (2006). A systematic RNA interference screen reveals a cell migration gene network in C. elegans. J Cell Sci 119, 4811-4818.
Fielenbach, N., Guardavaccaro, D., Neubert, K., Chan, T., Li, D., Feng, Q., Hutter, H., Pagano, M., and Antebi, A. (2007). DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age. Dev Cell 12, 443-455.
Frand, A.R., Russel, S., and Ruvkun, G. (2005). Functional genomic analysis of C. elegans molting. PLoS Biol 3, e312.
Hedgecock, E.M., Culotti, J.G., and Hall, D.H. (1990). The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61-85.
Henderson, S.T., Gao, D., Lambie, E.J., and Kimble, J. (1994). lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120, 2913-2924.
Hubbard, E.J., and Greenstein, D. (2005). Introduction to the germ line. WormBook, 1-4.
Itoh, B., Hirose, T., Takata, N., Nishiwaki, K., Koga, M., Ohshima, Y., and Okada, M. (2005). SRC-1, a non-receptor type of protein tyrosine kinase, controls the direction of cell and growth cone migration in C. elegans. Development 132, 5161-5172.
Izumikawa, T., Kitagawa, H., Mizuguchi, S., Nomura, K.H., Nomura, K., Tamura, J., Gengyo-Ando, K., Mitani, S., and Sugahara, K. (2004). Nematode chondroitin polymerizing factor showing cell-/organ-specific expression is indispensable for chondroitin synthesis and embryonic cell division. J Biol Chem 279, 53755-53761.
Killeen, M., Tong, J., Krizus, A., Steven, R., Scott, I., Pawson, T., and Culotti, J. (2002). UNC-5 function requires phosphorylation of cytoplasmic tyrosine 482, but its UNC-40-independent functions also require a region between the ZU-5 and death domains. Dev Biol 251, 348-366.
Kimble, J., and Crittenden, S.L. (2005). Germline proliferation and its control. WormBook, 1-14.
Korswagen, H.C. (2002). Canonical and non-canonical Wnt signaling pathways in Caenorhabditis elegans: variations on a common signaling theme. Bioessays 24, 801-810.
Korswagen, H.C., Coudreuse, D.Y., Betist, M.C., van de Water, S., Zivkovic, D., and Clevers, H.C. (2002). The Axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C. elegans. Genes Dev 16, 1291-1302.
Kubota, Y., Sano, M., Goda, S., Suzuki, N., and Nishiwaki, K. (2006). The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133, 263-273.
Lee, J., Li, W., and Guan, K.L. (2005a). SRC-1 mediates UNC-5 signaling in Caenorhabditis elegans. Mol Cell Biol 25, 6485-6495.
Lee, M., Cram, E.J., Shen, B., and Schwarzbauer, J.E. (2001). Roles for beta(pat-3) integrins in development and function of Caenorhabditis elegans muscles and gonads. J Biol Chem 276, 36404-36410.
Lee, M., Shen, B., Schwarzbauer, J.E., Ahn, J., and Kwon, J. (2005b). Connections between integrins and Rac GTPase pathways control gonad formation and function in C. elegans. Biochim Biophys Acta 1723, 248-255.
Lehmann, R. (2001). Cell migration in invertebrates: clues from border and distal tip cells. Curr Opin Genet Dev 11, 457-463.
Longman, D., Plasterk, R.H., Johnstone, I.L., and Caceres, J.F. (2007). Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway. Genes Dev 21, 1075-1085.
Lundquist, E.A., Reddien, P.W., Hartwieg, E., Horvitz, H.R., and Bargmann, C.I. (2001). Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128, 4475-4488.
Meighan, C.M., and Schwarzbauer, J.E. (2007). Control of C. elegans hermaphrodite gonad size and shape by vab-3/Pax6-mediated regulation of integrin receptors. Genes Dev 21, 1615-1620.
Merz, D.C., Alves, G., Kawano, T., Zheng, H., and Culotti, J.G. (2003). UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling. Dev Biol 256, 173-186.
Nash, B., Colavita, A., Zheng, H., Roy, P.J., and Culotti, J.G. (2000). The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-beta guidance factor in C. elegans. Genes Dev 14, 2486-2500.
Nishiwaki, K., Hisamoto, N., and Matsumoto, K. (2000). A metalloprotease disintegrin that controls cell migration in Caenorhabditis elegans. Science 288, 2205-2208.
Reddien, P.W., and Horvitz, H.R. (2000). CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2, 131-136.
Sarafi-Reinach, T.R., and Sengupta, P. (2000). The forkhead domain gene unc-130 generates chemosensory neuron diversity in C. elegans. Genes Dev 14, 2472-2485.
Savage-Dunn, C. (2005). TGF-beta signaling. WormBook, 1-12.
Schier, A.F., and Talbot, W.S. (2005). Molecular genetics of axis formation in zebrafish. Annu Rev Genet 39, 561-613.
Su, M., Merz, D.C., Killeen, M.T., Zhou, Y., Zheng, H., Kramer, J.M., Hedgecock, E.M., and Culotti, J.G. (2000). Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development 127, 585-594.
Suzuki, N., Toyoda, H., Sano, M., and Nishiwaki, K. (2006). Chondroitin acts in the guidance of gonadal distal tip cells in C. elegans. Dev Biol 300, 635-646.
Tamai, K.K., and Nishiwaki, K. (2007). bHLH transcription factors regulate organ morphogenesis via activation of an ADAMTS protease in C. elegans. Dev Biol 308, 562-571.
Wadsworth, W.G. (2002). Moving around in a worm: netrin UNC-6 and circumferential axon guidance in C. elegans. Trends Neurosci 25, 423-429.
Wadsworth, W.G., Bhatt, H., and Hedgecock, E.M. (1996). Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35-46.
Walston, T., Guo, C., Proenca, R., Wu, M., Herman, M., Hardin, J., and Hedgecock, E. (2006). mig-5/Dsh controls cell fate determination and cell migration in C. elegans. Dev Biol 298, 485-497.
Weaver, C., and Kimelman, D. (2004). Move it or lose it: axis specification in Xenopus. Development 131, 3491-3499.
Wu, Y.C., and Horvitz, H.R. (1998). C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501-504.
Xu, X., Rongali, S.C., Miles, J.P., Lee, K.D., and Lee, M. (2006). pat-4/ILK and unc-112/Mig-2 are required for gonad function in Caenorhabditis elegans. Exp Cell Res 312, 1475-1483.
Yamaguchi, T.P. (2001). Heads or tails: Wnts and anterior-posterior patterning. Curr Biol 11, R713-724.
Yochem, J.K. (2006). Nomarski images for learning the anatomy, with tips for mosaic analysis. WormBook, 1-47.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40899-
dc.description.abstract細胞遷移對生物的器官發育而言是一件重要的過程。線蟲的兩顆生殖腺遠端細胞的遷移過程,是研究細胞遷移的利器。遠端細胞的遷移過程有三個階段。線蟲孵出後,在第一齡末期進入第一階段,兩顆遠端細胞沿著腹部肌肉爬行。當線蟲成長到第三齡幼蟲中期時,遠端細胞轉九十度往背部行走,形成第二階段的遷移。到了第三齡幼蟲晚期,遠端細胞再度轉九十度,沿著背部肌肉往身體中央爬行,此時為第三階段。遠端細胞的遷移過程受到時間和空間上許多的因素調控。例如遠端細胞上的UNC-5細胞膜接收器和分布在腹部的UNC-6作用,控制遠端細胞往背部行走。三個調節發育時期的基因:dre-1、daf-12和lin-29,共同作用使蟲體的生殖腺在正常時期從第一階段的遷移路徑經第二階段再進入第三階段的初期。本實驗室先前分析認為DPY-24蛋白質藉由抑制unc-5的轉錄來避免第二階段爬行過早發生。在本實驗中,藉由分子遺傳技術,證實了一個新的dpy-24突變株,dpy-24(tk41)。dpy-24協同unc-5和unc-6在基因層次上調控遠端細胞在第三階段的方向選擇能力。證實了在DTC遷移過程中,unc-5和unc-6有調控第三階段方向性的能力。對於遠端細胞而言,DPY-24蛋白質只有在第一階段表現,在晚期則停止表現。本篇研究發現前述的調節發育時期的基因中,dre-1和daf-12參與了降低DPY-24晚期表現的機制。結果顯示了DPY-24受到嚴格的調控以規範進入第二階段爬行的時間點。zh_TW
dc.description.abstractCell migration is critical for organogenesis during animal development. Patterned migration of gonadal distal tip cells (DTCs) in Caenorhabditis elegans is an ideal model for cell migration research. DTCs have three sequential migration phases. During phase I, DTCs migrate along the ventral body wall muscle in the L1 and L2 stages. At mid-L3, DTCs reorient and migrate dorsalward during phase II. In phase III, DTCs turn orthogonally and migrate along the dorsal body wall muscle toward midbody in the late L3 and L4 stages. Several factors have been identified and characterized that regulate DTC migration in temporally and spatially specific fashions. For example, UNC-5/Netrin receptor has been shown to act in DTCs to guide their phase II dorsal migration against the ventrally concentrated repellent of UNC-6/Netrin. Three heterochronic-related proteins, transcription factors LIN-29 and DAF-12 and F-box protein DRE-1, act redundantly to control the reflexion of the gonad in L3. Our lab has identified a zinc-finger-containing protein DPY-24 that functions to suppress the initiation of phase II migration in phase I by transcriptionally repressing unc-5. In this study, we have genetically and molecularly defined a new allele of dpy-24, tk41. In addition, we found that dpy-24 acts synergistically with unc-5 and unc-6 to regulate the phase III migration direction. This observation shows a previously unassigned function of unc-5 and unc-6 in the longitudinal DTC migration. Furthermore, DPY-24 protein is detected in phase I but not phase II or III in wild type; however, daf-12 and dre-1 double mutations block the down-regulation of DPY-24 in phase II and III. This result reveals a complex regulation of the DPY-24 level in specifying the timing of phase II migration.en
dc.description.provenanceMade available in DSpace on 2021-06-14T17:05:45Z (GMT). No. of bitstreams: 1
ntu-97-R95b43009-1.pdf: 1601554 bytes, checksum: 25fdc0e3d71c256bf9070dad8e71988c (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………i
致謝……………………………………………………………………………………...ii
中文摘要………………………………………………………………………………..iii
Abstract…………………………………………………………………………… ……iv
Introduction……………………………………………………………………………...1
Materials and Methods…………………………………………………………………14
C. elegans strains and culture methods…………………………………………...…14
Analysis of DTC migration phenotypes……………………………………………..15
Immunohistochemistry………………………………………………………………16
Image analysis……………………………………………………………………….16
Database searches and bioinformatics……………………………………………….16
Results……………………………………………………………………… …………17
DTCs migration defect of dpy-24 mutants…………………………………………..17
Verification of a new dpy-24 allele…………………………………………………..18
DTCs migration defect of dpy-24;smg-2 mutants…………………………………...19
DTCs migration defect of unc-5 and unc-6 mutants………………………………...20
DTCs longitudinal migration defect of dpy-24; unc-5 and dpy-24; unc-6 mutants…20
transgene-dependent DTCs migration defect………………………………………..22
Temporal expression pattern of DPY-24 in DTCs……………………………….…..23
DRE-1 and DAF-12 act together to regulate DPY-24 expression level after phase I.25
Discussion………………………………………………………………………………27
DTCs migration defect of unc-5, unc-6, and dpy-24 mutants……………………….27
DTCs longitudinal migration defect of dpy-24; unc-5 and dpy-24; unc-6 mutants…28
lag-2::gfp transgenes caused a DTC migration defect………………………………29
Temporal expression pattern of DPY-24 in DTCs…………………………………...30
The regulation of post-translation of DPY-24……………………………………….31
Reference……………………………………………………………………………….35
Figures……………………………………………………………………… ……... …..I
Figure 1. DTC migration pattern of N2 hermaphrodite……………………………….I
Figure 2. The predicted protein structures of wild-type and mutant DPY-24……...…II
Figure 3. DTC migration pattern of dpy-24 mutants………………………………...III
Figure 4. DTC failed in phase II migration in unc-5(e53)………………………..…IV
Figure 5. DPY-24 is expressed in DTC during phase I migration and diminished thereafter………………………………………………………………………………..V
Figure 6. DPY-24 is diminished after phase I in dre-1(dh99)………………………VI
Figure 7. DPY-24 is diminished after phase I in daf-12(rh61rh411)……………….VII
Figure 8. DPY-24 is weakly expressed in DTC during phase III migration in dre-1(dh99);daf-12(rh61rh411)………………………………………………………VIII
Figure 9. Percentage of ectopic DPY-24 expression in DTC during phase III migration and the ratio is normalized to phase I……………………………………...IX
Figure 10. The model of the complex regulations of DPY-24 level and the dpy-24- involved-regulations of DTC migration……………………………………………….X
Tables………………………………………………………………………………. …XI
Table 1. DTCs migration defect of dpy-24 and dpy-24;smg-2……………………...XI
Table 2. The allele characterization of tk41………………………………………...XII
Table 3. tk41 and tp5 belong to the same complementation group………………...XIII
Table 4. DTCs migration defect of unc-5, unc-6 and unc-40……………………...XIV
Table 5. DTC longitudinal migration defect of dpy-24;unc-5 mutants…………….XV
Table 6. DTC longitudinal migration defect of dpy-24;unc-6 mutants………...….XVI
Table 7. Transgenic-dependent DTC migration defect…………………………...XVII
Table 8. dpy-24 promoter is turned on from phase I to III……………………....XVIII
Table 9. 3'UTR is not sufficient for DPY-24 downregulation…………………….XIX
Table 10. Coding region is sufficient for DPY-24 downregulation………………..XX
Table 11. dpy-24 promoter maybe weaker in phase II and III than I………………XXI
Supplementary Figures……………………………………………………………....XXII
Figure S1. The amino acids alignment of DPY-24 homologes………………...…XXII
Figure S2. The protein structure of wild type and mutant UNC-5……………....XXIII
Figure S3. The protein structure and domain function of UNC-6…………….…XXIV
Figure S4. The predicted cleavage sites of DPY-24……………………………....XXV
Figure S5. The predicted miRNAs which interact with dpy-24 3’UTR………....XXVI
Supplementary Table..……………………………………………………………. XXVII
Table S1. The strains containing GFP-tagging DTCs…………………………..XXVII
dc.language.isoen
dc.subjectdpy-24zh_TW
dc.subject細胞遷移zh_TW
dc.subject遠端細胞zh_TW
dc.subjectunc-5zh_TW
dc.subjectdistal tip cell (DTC)en
dc.subjectdpy-24en
dc.subjectunc-5en
dc.subjectcell migrationen
dc.title證實dpy-24(tk41)及DPY-24在線蟲遠端細胞中被降解的機制zh_TW
dc.titleCharacterization of dpy-24(tk41) and mechanism of DPY-24 down-regulation in distal tip cell migration in Caenorhabditis elegansen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃偉邦,陳光超
dc.subject.keyword細胞遷移,遠端細胞,unc-5,dpy-24,zh_TW
dc.subject.keywordcell migration,distal tip cell (DTC),unc-5,dpy-24,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2008-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved