請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40885
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曹恆偉(Hen-Wai Tsao) | |
dc.contributor.author | Chien-Hung Chen | en |
dc.contributor.author | 陳建宏 | zh_TW |
dc.date.accessioned | 2021-06-14T17:05:05Z | - |
dc.date.available | 2012-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-28 | |
dc.identifier.citation | [1]Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer. “Analysis And Design of Analog Integrated Circuits.” John Wiley & Sons, Inc., 2001.
[2]Behzad Razavi. “Design of Analog CMOS Integrated Circuit ”, McGraw-Hill, 2001. [3]J. David and K. Martin. “Analog Integrated Circuit Design”, John Wiley & Sons, Inc., 1997. [4]MAXIM “Accurately Estimating Optical Receiver Sensitivity”, 2001 [5]Behzad Razavi, “Design of Integrated Circuits for Optical Communications” ,McGraw-Hill, New York, 2003 [6]D. M. Pietruszynski, J. M. Steininger, and E. J. Swanson, 'A 50-Mbit/s CMOS monolithic optical receiver,' IEEE Journal of Solid-State Circuits, vol. 23, pp. 1426 - 1433, December 1988. [7]Mark Ingels, Geert Van Der Plas, Jan Crols, Michel Steyaert,” A CMOS 18 THzΩ 240 Mb/s transimpedance amplifier and 155 Mb/s LED-driver for low cost optical fiber links,” IEEE Journal of Solid-State Circuits, vol. 29, pp. 1552 – 1559, December 1994. [8]M. Ingels and M. S. J. Steyaert, 'A 1-Gb/s, 0.7-µm CMOS optical receiver with full rail-to-rail output swing,' IEEE Journal of Solid-State Circuits, vol. 34, pp. 971 - 977, July 1999. [9]MAXIM “MAX3822, +3.3V 2.5Gbps Quad Limiting Amplifier” data sheet [10]MINDSPEED “MC2006, CMOS Pre-amplifier with AGC for Long-reach 155 Mbps Fiber-optics Based Transmitter” data sheet [11] PHILIPS “TZA3033, SDH/SONET STM1/OC3 transimpedance amplifier” data sheet [12]W. Chen and C. Lu, “A 2.5 Gbps CMOS optical receiver analog front-end,” 2002 IEEE Custom Integrated Circuits Conference, May 2002. [13]S. Brigati, P. Colombara, L. D'Ascoli, U. Gatti, T. Kerekes, and P. Malcovati, “A SiGe BiCMOS burst-mode 155-Mb/s receiver for PON,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 887 - 894, July 2002 [14]B. Razavi, “A 622Mb/s 4.5pA/√Hz CMOS transimpedance amplifier,” IEEE International Solid-State Circuits Conference, vol. XLIII, pp. 162 - 163, February 2000. [15]S. Brigati, P. Colombara, L. D'Ascoli, U. Gatti, T. Kerekes, P. Malcovati, and A. Profumo, “A SiGe BiCMOS burst-mode 155 Mb/s receiver for PON,” Proceedings of the 27th European Solid-State Circuits Conference, September 2001. [16]K. Schrödinger, J. Stimma, and M. Mauthe, “A fully integrated CMOS receiver front-end for optic Gigabit Ethernet,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 874 - 880, July 2002. [17]Y. Oh, S. Lee, and H. H. Park, “A 2.5Gb/s CMOS transimpedance amplifier using novel active inductor load,” Proceedings of the 27th European Solid-State Circuits Conference, September 2001. [18]B. Analui and A. Hajimiri, “Bandwidth enhancement for transimpedance amplifiers,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1263 - 1270, August 2004. [19]B. Razavi, “Design of high-speed circuits for optical communication systems,” 2001 IEEE Custom Integrated Circuits Conference, May 2001. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40885 | - |
dc.description.abstract | 網路傳輸的主流技術,從以前的56K撥接網路,演進到ADSL、cable modan。但隨著資訊的發展以及網路基礎建設的普及,使得數位家庭、線上遊戲、影音檔案傳輸等寬頻應用大量增加,因此ADSL、cable modan等網路技術漸漸無法滿足日益龐大的資料傳輸。光纖因具有高頻寬、舖設容易、大容量、低損失與不受電磁波干擾、經濟性優異、保密性佳等特性,因此逐漸取代傳統以銅線傳輸的傳輸模式,成為未來寬頻網路的趨勢。
早期電信業者鋪設光纖大都以骨幹網路為主,再從骨幹網路以銅線傳輸的方式連接家庭。隨著寬頻應用需求不斷提昇,連接家庭的銅線效能卻有其極限,因此形成整個網路傳輸的瓶頸。所以光纖已漸漸將以往從電信機房局端(Optical Line Terminal, OLT)到用戶終端(Optical Network Unit, ONU; Optical Network Terminal, ONT)的最後一哩銅線取代。 轉阻放大器(Transimpedance amplifier,TIA)是用於光纖網路接收端,它直接轉換從光二極體(photodiode)產生的微弱電流訊號,因此它必須抗雜訊能力很強。另外當光纖傳輸訊號時,光能量的動態範圍很大,為此我們特別提出用電壓轉電流的技巧,使得IC內的auto gain control電路可以因應輸入訊號的大動態範圍。因此本顆IC特色是動態輸入範圍很大(-39dBm~+3dBm),靈敏度(sensitivity)可達到-39dBm,操作電壓3.3V~5V,數據傳輸速率(data rate)155Mbps,製程是0.35um CMOS製程。 | zh_TW |
dc.description.abstract | The mainstream network transmission technologies evolved from 56k dial-up network to ADSL and cable modems nowadays. In addition, the advance of technologies and popularization of network infrastructures cause several broadband applications such as digitalhome, online game, video and music file transmissions to increase drastically. However, network technologies such as ADSL and cable modems are unable to satisfy the demand of huge data transmission today. Optical fiber, because of high bandwidth, large capacity, low loss, low cost, good security, being unaffected by EM wave disturbance, being laid down easily, is now substituting for traditional copper wire and becoming a trend in future broadband network.
Early optical fiber was laid down by telecommunication entrepreneurs mostly by the backbone network. The backbone network was then connected to users’ homes by copper wire. However, with the demand of broadband applications increasing, the copper wire is reaching its limits, forming a bottleneck in network transmission. So the last mile of copper wire which connects Optical Line Terminal (OLT) and Optical Network Unit (ONU) is replaced by optical fiber now. According to references, transimpedance amplifier(TIA) is suitable for the optical fiber network receiver. It transforms the weak current signal from photodiode directly, and therefore its anti-noise ability must be very strong. Moreover, when optical fiber transmits signal, the light energy dynamic range is very large. For this reason, a voltage to current technique is specially proposed to allow IC auto gain control circuit to deal with the high dynamic range of input signal. Therefore the characteristics of the IC in this study include large input dynamic range (-39dBm~+3dBm), high sensitivity (-39dBm), supply voltage (3.3~5V), data rate 155Mbps, and process 0.35um CMOS. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:05:05Z (GMT). No. of bitstreams: 1 ntu-97-R91943007-1.pdf: 6398508 bytes, checksum: 01945fa7fd57fd16093f97a1e4663a84 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 摘要.......................................................i
Abstract..................................................ii 目錄......................................................iv 圖目錄...................................................vii 表目錄...................................................xii 第一章 導論 1 1.1研究背景................................................1 1.2研究動機................................................3 1.3設計目標................................................3 1.4章節概述................................................3 第二章 IC內部雜訊來源...................................5 2.1散粒雜訊 (shot noise)...................................5 2.2熱雜訊 (thermal noise)..................................7 2.3閃爍雜訊 (flicker noise,1/f noise).....................8 2.4並聯-並聯回授放大器雜訊模型 (shunt-shunt feedback amplifier noise model)....................................10 2.5靈敏度分析 (sensitivity analysis)......................14 第三章 轉阻放大器(transimpedance amplifier) 16 3.1並聯-並聯回授放大器 (shunt-shunt feedback amplifier)...16 3.2並聯-並聯回授放大器穩定度分析 (stability analysis).....17 3.3 3/5V 高動態範圍155Mbps轉阻放大器架構圖(3/5V, 155Mbps high dynamic range transimpedance amplifier)..............23 3.4核心放大器 (core Amplifier)............................25 3.5電壓轉電流電路 (voltage to current)....................26 3.6自動增益控制電路 (automatic gain control)..............28 3.6.1 金氧半電晶體(MOS)定電阻...........................28 3.6.2增益控制電路(gain control circuit).................29 3.7直流偏壓 (DC_bias).....................................31 3.7.1帶隙參考電路(bandgap reference)....................31 3.7.2偏壓電路 (bias)....................................33 3.7.3 調整器(regulator).................................34 3.8單端轉雙端以及緩衝器電路 (single to differential (STOD) & buffer).................................................35 3.8.1 固定轉導(constant transconductance)...............35 3.8.2 緩衝器(buffer)....................................38 3.9 實體電路佈局(physical layout).........................39 第四章 模擬結果 40 4.1模擬環境...............................................40 4.2 3.3V眼圖(eye diagram)模擬結果(最糟狀況)..............42 4.2.1 3.3V 佈局前模擬(presim)..........................42 4.2.2 3.3V 佈局後模擬(postsim).........................45 4.3 5V眼圖(eye diagram)模擬結果(最糟狀況)................49 4.3.1 5V佈局前模擬(presim).............................49 4.3.2 5V佈局後模擬(postsim)............................52 4.4模擬結果討論(佈局後)...................................56 第五章 IC量測結果 57 5.1 IC量測環境............................................57 5.2 3.3V 量測結果........................................59 5.2.1 3.3V -40C ......................................59 5.2.2 3.3V 25C........................................62 5.2.3 3.3V 100C.......................................65 5.3 5V 量測結果..........................................68 5.3.1 5V -40C.........................................68 5.3.2 5V 25C..........................................71 5.3.3 5V 100C.........................................74 5.4量測結果討論...........................................77 第六章 結論 79 6.1 結論..................................................79 6.2 未來工作方向..........................................79 參考文獻 81 | |
dc.language.iso | zh-TW | |
dc.title | 高動態範圍155Mbps轉阻放大器 | zh_TW |
dc.title | High Dynamic Range 155Mbps Transimpedance Amplifier | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳建中,陳伯奇,林宗賢 | |
dc.subject.keyword | 光纖到府,被動式光纖網路,轉阻放大器,光二極體,並聯-並聯回授放大器,自動增益控制,固定轉導, | zh_TW |
dc.subject.keyword | Fiber To The Home(FTTH),Passive Optical Network(PON),Transimpedance Amplifier,Photodiode,Shunt-Shunt Feedback Amplifier,Auto Gain Control,Constant Transconductance, | en |
dc.relation.page | 83 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-29 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 6.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。