請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40810
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林亮音 | |
dc.contributor.author | Yong-Sian Chen | en |
dc.contributor.author | 陳勇先 | zh_TW |
dc.date.accessioned | 2021-06-14T17:01:20Z | - |
dc.date.available | 2010-08-14 | |
dc.date.copyright | 2008-08-14 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-29 | |
dc.identifier.citation | Altuvia, Y., P. Landgraf, et al. (2005). 'Clustering and conservation patterns of human microRNAs.' Nucleic Acids Res 33(8): 2697-706.
Ambros, V. (2004). 'The functions of animal microRNAs.' Nature 431(7006): 350-5. Antequera, F. and A. Bird (1993). 'Number of CpG islands and genes in human and mouse.' Proc Natl Acad Sci U S A 90(24): 11995-9. Bartel, D. P. (2004). 'MicroRNAs: genomics, biogenesis, mechanism, and function.' Cell 116(2): 281-97. Bird, A. (2002). 'DNA methylation patterns and epigenetic memory.' Genes Dev 16(1): 6-21. Brueckner, B., C. Stresemann, et al. (2007). 'The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function.' Cancer Res 67(4): 1419-23. Calin, G. A. and C. M. Croce (2006). 'MicroRNA-cancer connection: the beginning of a new tale.' Cancer Res 66(15): 7390-4. Calin, G. A., C. D. Dumitru, et al. (2002). 'Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.' Proc Natl Acad Sci U S A 99(24): 15524-9. Calin, G. A., M. Ferracin, et al. (2005). 'A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia.' N Engl J Med 353(17): 1793-801. Calin, G. A., C. Sevignani, et al. (2004). 'Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.' Proc Natl Acad Sci U S A 101(9): 2999-3004. Chan, J. A., A. M. Krichevsky, et al. (2005). 'MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.' Cancer Res 65(14): 6029-33. Chen, C. Z., L. Li, et al. (2004). 'MicroRNAs modulate hematopoietic lineage differentiation.' Science 303(5654): 83-6. Cimmino, A., G. A. Calin, et al. (2005). 'miR-15 and miR-16 induce apoptosis by targeting BCL2.' Proc Natl Acad Sci U S A 102(39): 13944-9. Eis, P. S., W. Tam, et al. (2005). 'Accumulation of miR-155 and BIC RNA in human B cell lymphomas.' Proc Natl Acad Sci U S A 102(10): 3627-32. Esquela-Kerscher, A. and F. J. Slack (2006). 'Oncomirs - microRNAs with a role in cancer.' Nat Rev Cancer 6(4): 259-69. Esteller, M., J. M. Silva, et al. (2000). 'Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors.' J Natl Cancer Inst 92(7): 564-9. Fazi, F., A. Rosa, et al. (2005). 'A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis.' Cell 123(5): 819-31. Felli, N., L. Fontana, et al. (2005). 'MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation.' Proc Natl Acad Sci U S A 102(50): 18081-6. Filipowicz, W., S. N. Bhattacharyya, et al. (2008). 'Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?' Nat Rev Genet 9(2): 102-14. Garzon, R., F. Pichiorri, et al. (2006). 'MicroRNA fingerprints during human megakaryocytopoiesis.' Proc Natl Acad Sci U S A 103(13): 5078-83. Garzon, R., F. Pichiorri, et al. (2007). 'MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia.' Oncogene 26(28): 4148-57. Georgantas, R. W., 3rd, R. Hildreth, et al. (2007). 'CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control.' Proc Natl Acad Sci U S A 104(8): 2750-5. Griffiths-Jones, S., R. J. Grocock, et al. (2006). 'miRBase: microRNA sequences, targets and gene nomenclature.' Nucleic Acids Res 34(Database issue): D140-4. Hannon, G. J. (2002). 'RNA interference.' Nature 418(6894): 244-51. Harikrishnan, K. N., M. Z. Chow, et al. (2005). 'Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing.' Nat Genet 37(3): 254-64. He, L., J. M. Thomson, et al. (2005). 'A microRNA polycistron as a potential human oncogene.' Nature 435(7043): 828-33. Herman, J. G. and S. B. Baylin (2003). 'Gene silencing in cancer in association with promoter hypermethylation.' N Engl J Med 349(21): 2042-54. Hertel, J., M. Lindemeyer, et al. (2006). 'The expansion of the metazoan microRNA repertoire.' BMC Genomics 7: 25. Johnson, C. D., A. Esquela-Kerscher, et al. (2007). 'The let-7 microRNA represses cell proliferation pathways in human cells.' Cancer Res 67(16): 7713-22. Johnson, S. M., H. Grosshans, et al. (2005). 'RAS is regulated by the let-7 microRNA family.' Cell 120(5): 635-47. Jones, P. A. and S. B. Baylin (2002). 'The fundamental role of epigenetic events in cancer.' Nat Rev Genet 3(6): 415-28. Jones, P. A. and S. B. Baylin (2007). 'The epigenomics of cancer.' Cell 128(4): 683-92. Jones, P. L., G. J. Veenstra, et al. (1998). 'Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.' Nat Genet 19(2): 187-91. Khvorova, A., A. Reynolds, et al. (2003). 'Functional siRNAs and miRNAs exhibit strand bias.' Cell 115(2): 209-16. Kluiver, J., S. Poppema, et al. (2005). 'BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas.' J Pathol 207(2): 243-9. Knudson, A. G. (2001). 'Two genetic hits (more or less) to cancer.' Nat Rev Cancer 1(2): 157-62. Kulshreshtha, R., M. Ferracin, et al. (2007). 'A microRNA signature of hypoxia.' Mol Cell Biol 27(5): 1859-67. Lee, Y., I. Hur, et al. (2006). 'The role of PACT in the RNA silencing pathway.' Embo J 25(3): 522-32. Lee, Y. S. and A. Dutta (2007). 'The tumor suppressor microRNA let-7 represses the HMGA2 oncogene.' Genes Dev 21(9): 1025-30. Lu, L., D. Katsaros, et al. (2007). 'Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis.' Cancer Res 67(21): 10117-22. Lujambio, A., S. Ropero, et al. (2007). 'Genetic unmasking of an epigenetically silenced microRNA in human cancer cells.' Cancer Res 67(4): 1424-9. Merlo, A., J. G. Herman, et al. (1995). '5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers.' Nat Med 1(7): 686-92. Nan, X., H. H. Ng, et al. (1998). 'Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.' Nature 393(6683): 386-9. Negrini, M., M. Ferracin, et al. (2007). 'MicroRNAs in human cancer: from research to therapy.' J Cell Sci 120(Pt 11): 1833-40. O'Donnell, K. A., E. A. Wentzel, et al. (2005). 'c-Myc-regulated microRNAs modulate E2F1 expression.' Nature 435(7043): 839-43. Pasquinelli, A. E., B. J. Reinhart, et al. (2000). 'Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.' Nature 408(6808): 86-9. Peters, L. and G. Meister (2007). 'Argonaute proteins: mediators of RNA silencing.' Mol Cell 26(5): 611-23. Reinhart, B. J., F. J. Slack, et al. (2000). 'The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.' Nature 403(6772): 901-6. Rodriguez, A., S. Griffiths-Jones, et al. (2004). 'Identification of mammalian microRNA host genes and transcription units.' Genome Res 14(10A): 1902-10. Saito, Y. and P. A. Jones (2006). 'Epigenetic activation of tumor suppressor microRNAs in human cancer cells.' Cell Cycle 5(19): 2220-2. Saito, Y., G. Liang, et al. (2006). 'Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells.' Cancer Cell 9(6): 435-43. Sakai, T., J. Toguchida, et al. (1991). 'Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene.' Am J Hum Genet 48(5): 880-8. Schwarz, D. S., G. Hutvagner, et al. (2003). 'Asymmetry in the assembly of the RNAi enzyme complex.' Cell 115(2): 199-208. Takai, D. and P. A. Jones (2002). 'Comprehensive analysis of CpG islands in human chromosomes 21 and 22.' Proc Natl Acad Sci U S A 99(6): 3740-5. Takamizawa, J., H. Konishi, et al. (2004). 'Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.' Cancer Res 64(11): 3753-6. Tolia, N. H. and L. Joshua-Tor (2007). 'Slicer and the argonautes.' Nat Chem Biol 3(1): 36-43. van den Berg, A., B. J. Kroesen, et al. (2003). 'High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma.' Genes Chromosomes Cancer 37(1): 20-8. Xiong, Z. and P. W. Laird (1997). 'COBRA: a sensitive and quantitative DNA methylation assay.' Nucleic Acids Res 25(12): 2532-4.s Yekta, S., I. H. Shih, et al. (2004). 'MicroRNA-directed cleavage of HOXB8 mRNA.' Science 304(5670): 594-6. Yeom, K. H., Y. Lee, et al. (2006). 'Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing.' Nucleic Acids Res 34(16): 4622-9. Yu, F., H. Yao, et al. (2007). 'let-7 regulates self renewal and tumorigenicity of breast cancer cells.' Cell 131(6): 1109-23. Zeng, Y. (2006). 'Principles of micro-RNA production and maturation.' Oncogene 25(46): 6156-62. Zhang, Y., H. H. Ng, et al. (1999). 'Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation.' Genes Dev 13(15): 1924-35. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40810 | - |
dc.description.abstract | 微型核糖核酸 let-7家族成員可藉由調控多種參與細胞週期的基因,包括致癌基因RAS、HMGA2等來調控細胞增生、分化。目前已知道成員之一的let-7a-3可藉由表觀遺傳來調控基因表現,而且在上皮性卵巢癌病人中發現其let-7a-3基因有高度甲基化,且基因甲基化情形和病人預後具統計上的意義。故本研究的目的即是想了解急性骨髓性白血病病人其let-7a-3基因甲基化的情形,並探討其在急性骨髓性白血病的重要性。
本研究以兩種偵測DNA甲基化方法對病人檢體作分析:以組合重亞硫酸鹽限制酶分析法對90個病人檢體作分析,發現73個病人分析的結果是甲基化(81.1%)、11個病人是部份甲基化(12.2%)和6個是未甲基化的病人(6.7%);並以重亞硫酸鹽定序法對其中之16個檢體的let-7a-3基因啟動子區域內的33個CpG位點做分析,同時與組合重亞硫酸鹽限制酶分析法結果進行確認。結果發現兩種方法實驗結果一致,組合重亞硫酸鹽限制酶分析法結果是甲基化的檢體其重亞硫酸鹽定序法得到的甲基化情形在56~86%;部分甲基化的在45~58%;未甲基化的在12~15%。將組合重亞硫酸鹽限制酶分析法結果和病人臨床資料作卡方測定分析,發現let-7a-3基因啟動子區域甲基化情形和染色體核型分型及CEBPA轉錄起點上游-1423位置上的CpG是否甲基化則具有統計上的意義,p值分別是0.006和0.002。顯示在unfavorable和intermediate的病人中,let-7a-3多為甲基化的情形,而在favorable的病人中,甲基化和部分甲基化比例約為一比一;CEBPA未甲基化的病人其let-7a-3多為甲基化。 在5年的存活分析結果中,發現核型分型是intermediate的病人中,let-7a-3 基因啟動子區域甲基化的病人預後比較好,p值為0.046;在CEBPA未甲基化的病人中,let-7a-3 基因啟動子區域甲基化的病人預後也比較好,p值為0.02。另外,根據細胞株和僅有的6支病人檢體RNA結果顯示,let-7a-3 基因啟動子區域甲基化情形和RNA表現是有負相關的,r值是-0.82。 | zh_TW |
dc.description.abstract | Let-7 family miRNAs repress several genes involved in cell cycle, including RAS and HMGA2 . By this way, they play specific roles in cell proliferation, differentiation and the other biological processes. Let-7a-3 belongs to the archetypal let-7 miRNA gene family and was found to be regulated by epigenetic regulation. Recent study showed that let-7a-3 was methylated in epithelial ovarian cancer and methylation status was associated with survival of patients. In this study, we speculate the methylation status of let-7a-3 and its significance in acute myeloid leukemia.
Combined bisulfite restriction analysis(COBRA)were used to evaluate the let-7a-3 methylation status in 90 AML patients. We found that let-7a-3 was methylated in 73 patients(81.1%), partial methylated in 11 patients(12.2%)and unmethylated in 6 patients(6.7%). Of them, 16 patients were simultaneously analyzed for methylation status of 33 CpG sites in let-7a-3 promoter region by using bisulfite sequencing PCR method (BSSP). BSSP demonstrated similar results to the COBRA method, showing the methylation levels ranged from 56% to 86% in patients with let-7a-3 methylated, 45% to 58% in patients with let-7a-3 partial methylated and 12% to 15% in patients with let-7a-3 unmethylated. Chi-square test was performed to assess the association of let-7a-3 methylation status with patients’ age, gender and FAB subtype . We found that let-7a-3 methylation status was negatively correlated with karyotype and CEBPA methylation significantly(0.006 and 0.002, respectively). Kaplan-Meier survival analysis showed that let-7a-3 methylation in AML patients with intermediate karyotype or CEBPA unmethylation had better prognosis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T17:01:20Z (GMT). No. of bitstreams: 1 ntu-97-R95424025-1.pdf: 1001058 bytes, checksum: d45c4eb2925eb56c147501e7845ed507 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 中文摘要 ……………………………………………………………………………...2
英文摘要 ………………………………………………………………………….…..3 第一章 引言………………………………………………………………………...4 第二章 實驗目的………………………………………………………………….10 第三章 實驗材料及方法………………………………………………………….11 第四章 實驗結果………………………………………………………………….21 第五章 討論……………………………………………………………………….24 第六章 結論……………………………………………………………………….27 圖 …………………………………………………………………………….28 表 …………………………………………………………………………….44 參考文獻 …………………………………………………………………………….48 補充數據 …………………………………………………………………………….55 附圖 …………………………………………………………………………….60 附表 …………………………………………………………………………….64 | |
dc.language.iso | zh-TW | |
dc.title | 微型核糖核酸基因let-7a-3在急性骨髓性白血病病人之甲基化情形 | zh_TW |
dc.title | Methylation status of microRNA gene let-7a-3 in acute myeloid leukemia patients | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 胡忠怡,呂健惠 | |
dc.subject.keyword | 微型核糖核酸let-7a-3,急性骨髓性白血病,甲基化, | zh_TW |
dc.subject.keyword | microRNA,let-7a-3,methylation,Acute myeloid leukemia, | en |
dc.relation.page | 64 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 977.6 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。