請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40787完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Shu-Yen Huang | en |
| dc.contributor.author | 黃書彥 | zh_TW |
| dc.date.accessioned | 2021-06-14T17:00:18Z | - |
| dc.date.available | 2013-09-21 | |
| dc.date.copyright | 2011-09-21 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-12 | |
| dc.identifier.citation | 1. Compton, K.E.T.a.R.G., Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation. International Journal of Electrochemcal Science, 2010. 5(2010): p. 1246 - 1301
2. Mast, R.L., Test article for the detection of glucose. 1967, US patent 3,298,789: United States. 3. Free, A.H., Composition of matter. 1958, US patent 2,848,308: United States. 4. Cass, A.E.G., et al., Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry, 1984. 56(4): p. 667-671. 5. Yuan, J.H., K. Wang, and X.H. Xia, Highly Ordered Platinum-Nanotubule Arrays for Amperometric Glucose Sensing. Advanced Functional Materials, 2005. 15(5): p. 803-809. 6. Bard, A.J. and L.R. Faulkner, ELECTROCHEMICAL METHODS Fundamentals and Applications. 2nd ed. 2001, New York: JOHN WILEY & SONS, INC. 7. Wang, J., et al., Electrochemical activation of screen-printed carbon strips. Analyst, 1996. 121(3): p. 345-350. 8. Hallam, P.M., et al., Nickel oxide screen printed electrodes for the sensing of hydroxide ions in aqueous solutions. Analytical Methods, 2010. 2(8): p. 1152-1155. 9. Kadara, R.O. and I.E. Tothill, Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples. Analytica Chimica Acta, 2008. 623(1): p. 76-81. 10. Ping, J., et al., Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosensors and Bioelectronics. In Press, Corrected Proof. 11. Domínguez Renedo, O. and M.J. Arcos Martínez, Anodic stripping voltammetry of antimony using gold nanoparticle-modified carbon screen-printed electrodes. Analytica Chimica Acta, 2007. 589(2): p. 255-260. 12. Xia, X.H., et al., Improved electrochromic performance of hierarchically porous Co3O4 array film through self-assembled colloidal crystal template. Electrochimica Acta, 2010. 55(3): p. 989-994. 13. Li, W.Y., L.N. Xu, and J. Chen, Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Advanced Functional Materials, 2005. 15(5): p. 851-857. 14. Hu, L., Q. Peng, and Y. Li, Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. Journal of the American Chemical Society, 2008. 130(48): p. 16136-16137. 15. WANG, et al., Preparation and catalytic performance of Co3O4 catalysts for low-temperature CO oxidation. Vol. 116. 2007, New York, NY, ETATS-UNIS: Springer. 7. 16. Park, J., X. Shen, and G. Wang, Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sensors and Actuators B: Chemical, 2009. 136(2): p. 494-498. 17. Li, Y., B. Tan, and Y. Wu, Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Letters, 2007. 8(1): p. 265-270. 18. Makhlouf, S.A., Magnetic properties of Co3O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 2002. 246(1-2): p. 184-190. 19. Shi, W. and N. Chopra, Surfactant-free synthesis of novel copper oxide (CuO) nanowire–cobalt oxide (Co3O4) nanoparticle heterostructures and their morphological control Journal of Nanoparticle Research, 2011. 13(2): p. 851-868. 20. Chen, L., et al., Synthesis and surface activity of single-crystalline Co3O4 (111) holey nanosheets. Nanoscale, 2010. 2(9): p. 1657-1660. 21. Li, Y., B. Tan, and Y. Wu, Freestanding Mesoporous Quasi-Single-Crystalline Co3O4 Nanowire Arrays. Journal of the American Chemical Society, 2006. 128(44): p. 14258-14259. 22. Li, C., et al., Synthesis of Cobalt Ion-Based Coordination Polymer Nanowires and Their Conversion into Porous Co3O4 Nanowires with Good Lithium Storage Properties. Chemistry – A European Journal, 2010. 16(17): p. 5215-5221. 23. Tao, L. and et al., A novel process from cobalt nanowire to Co3O4 nanotube. Nanotechnology, 2004. 15(11): p. 1479. 24. Srivastava, A.K., S. Madhavi, and R.V. Ramanujan, A novel method to synthesize cobalt oxide (Co3O4) nanowires from cobalt (Co) nanobowls. physica status solidi (a), 2010. 207(4): p. 963-966. 25. Srivastava, A., et al., Templated Assembly of Magnetic Cobalt Nanowire Arrays. Metallurgical and Materials Transactions A, 2007. 38(4): p. 717-724. 26. Keng, P.Y., et al., Colloidal Polymerization of Polymer-Coated Ferromagnetic Nanoparticles into Cobalt Oxide Nanowires. ACS Nano, 2009. 3(10): p. 3143-3157. 27. Keng, P.Y., et al., Synthesis and Self-Assembly of Polymer-Coated Ferromagnetic Nanoparticles. ACS Nano, 2007. 1(4): p. 279-292. 28. Wang, J., et al., Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires. Advanced Materials, 2004. 16(2): p. 137-140. 29. Wang, J., Y. Wu, and Y. Zhu, Fabrication of complex of Fe3O4 nanorods by magnetic-field-assisted solvothermal process. Materials Chemistry and Physics, 2007. 106(1): p. 1-4. 30. Wang, M. and Q. Chen, Experimental and Theoretical Investigations on the Magnetic-Field-Induced Variation of Surface Energy of Co3O4 Crystal Faces. Chemistry – A European Journal, 2010. 16(40): p. 12088-12090. 31. Wang, M., L. Zeng, and Q. Chen, Controlled synthesis of Co3O4 nanocubes under external magnetic fields and their magnetic properties. Dalton Transactions, 2011. 40(3): p. 597-601. 32. Yi, S. and et al., Scanning tunnelling microscope studies of angstrom-scale Co3O4 nanowires. Nanotechnology, 2010. 21(33): p. 335605. 33. Ding, Y., et al., Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors and Bioelectronics, 2010. 26(2): p. 542-548. 34. Beden, B., et al., Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of -glucose: Identification of reactive intermediates and reaction products. Electrochimica Acta, 1996. 41(5): p. 701-709. 35. Park, S., H. Boo, and T.D. Chung, Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 2006. 556(1): p. 46-57. 36. Yang, J., et al., A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta, 2010. 82(1): p. 25-33. 37. Park, S., T.D. Chung, and H.C. Kim, Nonenzymatic Glucose Detection Using Mesoporous Platinum. Analytical Chemistry, 2003. 75(13): p. 3046-3049. 38. Xiao, F., et al., Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosensors and Bioelectronics, 2009. 24(12): p. 3481-3486. 39. Li, Y., et al., Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemistry Communications, 2007. 9(5): p. 981-988. 40. Cui, H.-F., et al., Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Analytica Chimica Acta, 2007. 594(2): p. 175-183. 41. Song, Y.-Y., et al., Nonenzymatic Glucose Detection by Using a Three-Dimensionally Ordered, Macroporous Platinum Template. Chemistry – A European Journal, 2005. 11(7): p. 2177-2182. 42. Bai, Y., et al., Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sensors and Actuators B: Chemical, 2008. 134(2): p. 471-476. 43. Jena, B.K. and C.R. Raj, Enzyme-Free Amperometric Sensing of Glucose by Using Gold Nanoparticles. Chemistry – A European Journal, 2006. 12(10): p. 2702-2708. 44. Cherevko, S. and C.-H. Chung, Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sensors and Actuators B: Chemical, 2009. 142(1): p. 216-223. 45. Mao, X. and W. Xu-Kui, Response of typical paddy soil fertility to long-term cultivation in Taihu Lake Region. Chinese Journal of Eco-Agriculture, 2009. 17(2): p. 220. 46. Liu, Y., et al., Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosensors and Bioelectronics, 2009. 24(11): p. 3329-3334. 47. Kang, X., et al., A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Analytical Biochemistry, 2007. 363(1): p. 143-150. 48. Li, X., et al., Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor. Sensors and Actuators B: Chemical, 2009. 136(2): p. 444-450. 49. Reitz, E., et al., CuO Nanospheres Based Nonenzymatic Glucose Sensor. Electroanalysis, 2008. 20(22): p. 2482-2486. 50. Kepley, L.J. and A.J. Bard, Ellipsometric, electrochemical, and elemental characterization of the surface phase produced on glassy carbon electrodes by electrochemical activation. Analytical Chemistry, 1988. 60(14): p. 1459-1467. 51. Zen, J.-M., et al., Electrochemical impedance study and sensitive voltammetric determination of Pb() at electrochemically activated glassy carbon electrodes. Analyst, 2000. 125(6): p. 1139-1146. 52. Gao, Y., et al., Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources, 2010. 195(6): p. 1757-1760. 53. Nicholson, R.S. and I. Shain, Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Analytical Chemistry, 1964. 36(4): p. 706-723. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40787 | - |
| dc.description.abstract | 奈米材料的技術近二十年來蓬勃發展,由於奈米尺度的材料有很高的表面積,在電化學領域早已被運用來做為燃料電池、鋰電池…等各種電極材料的研究。
我們利用不同的參數去生長 Co 3 O 4 奈米線,直接生長於網版印刷碳電極的工作電極表面上,以其作為修飾電極的材料,使電極表面積大幅增加,改進電極的電化學活性。舉凡磁場、電極表面光滑度、預氧化以及濃液的濃度,都會影響奈米線的生長,將在此篇文章一一探討。其後亦利用修飾後的電極,初步對於葡萄糖濃度做分析,以期非酵素電極應用於血糖測試方面能有所進展。 | zh_TW |
| dc.description.abstract | Nano-material technology was developed rapidly for the past two decades. Because of the high surface area of the nano-scale materials, it has been used for the fuel cells and lithium batteries researching in electrochemistry.
We used different parameters for the Co3O4 nanowires growing, and directly grew on the top of screen-printed carbon electrodes as material of modified electrodes for increasing surface area to improve the electrochemical activity. It might affect Co3O4 nanowires growth such as magnetic fields, electrode surface smoothness,pre-oxidation and the concentration of NH4NO3. We discussed how the parameters influence Co3O4 nanowires on growth in this paper. We attempted to use the modified electrodes in glucose concentration analysis at last. We expect the non-enzymatic electrode use on blood glucose test have great progress. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T17:00:18Z (GMT). No. of bitstreams: 1 ntu-100-R98548031-1.pdf: 4165461 bytes, checksum: 77bfd4441f95bc29046676eb795a3e1c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖片目錄 vi 第一章 緒論 1 1-1 感測器〈Sensors〉 1 1-1-1 生物感測器〈Biosensors〉 2 1-2 網版印刷電極〈Screen-printed Electrodes, SPEs〉 6 1-3 化學修飾電極〈Chemically Modified Electrodes〉 8 1-3-1 奈米材料修飾電極 9 1-4 電化學分析簡介 11 1-4-1 三電極系統 12 1-4-2 循環伏安法〈Cyclic Voltammetry〉 13 1-4-3 計時安培法〈Chronoamperometry〉 14 第二章 實驗目的 15 2-1 金屬氧化物Co3O4修飾電極 15 2-2 將我們的修飾電極初步嘗試於葡萄糖測試 16 第三章 實驗材料與方法 18 3-1 儀器設備 18 3-2 藥品及耗材 19 3-3 實驗步驟 20 3-3-1 網版印刷碳電極表面預處理 21 3-3-2 工作電極表面修飾 23 3-3-3 分析 25 第四章 結果與討論 28 4-1 SPCE表面型態分析 28 4-1-1 以各種不同變數去生長Co3O4並對其SEM影像探討 29 4-2 電化學分析試驗 40 4-2-1 循環伏安法 40 4-2-2 安培法 46 第五章 結論 48 參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 碳電極 | zh_TW |
| dc.subject | 網版印刷 | zh_TW |
| dc.subject | 電化學 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 磁場 | zh_TW |
| dc.subject | 葡萄糖 | zh_TW |
| dc.subject | carbon electrode | en |
| dc.subject | magnetic field | en |
| dc.subject | glucose | en |
| dc.subject | SPCE | en |
| dc.subject | nanowires | en |
| dc.subject | electrochemistry | en |
| dc.subject | screen-printed | en |
| dc.title | 以氧化鈷奈米線修飾網版印刷碳電極之研究 | zh_TW |
| dc.title | A Study of Screen-Printed Carbon Electrode Modified by
Cobalt Oxide Nanowires | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾次文(Tze-Wen Chung),劉得任(Der-Zen Liu),黃意真(Yi-Cheng Huang),許馨云(Hsin-Yun Hsu) | |
| dc.subject.keyword | 奈米線,電化學,網版印刷,碳電極,葡萄糖,磁場, | zh_TW |
| dc.subject.keyword | nanowires,electrochemistry,screen-printed,carbon electrode,SPCE,glucose,magnetic field, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
