Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40750
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee),吳光鐘(Kuang-Chong Wu)
dc.contributor.authorChun-Chieh Fangen
dc.contributor.author方俊傑zh_TW
dc.date.accessioned2021-06-14T16:58:43Z-
dc.date.available2009-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citation[1] H. A. Bethe, 'Theory of diffraction by small holes,' Physical Review 66, 163-182 (1944).
[2] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, 'Extraordinary optical transmission through sub-wavelength hole arrays,' Nature 391, 667-669 (1998).
[3] T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, 'Surface-plasmon-enhanced transmission through hole arrays in Cr films,' J. Opt. Soc. Am. B 16, 1743-1748 (1999).
[4] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, 'Surface plasmons enhance optical transmission through subwavelength holes,' Phys. Rev. B 58, 6779-6782 (1998).
[5] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, 'Crucial role of metal surface in enhanced transmission through subwavelength apertures,' Applied Physics Letters 77, 1569-1571 (2000).
[6] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, 'Beaming light from a subwavelength aperture,' Science 297, 820-822 (2002).
[7] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin ; New York, 1988).
[8] J. Durnin, J. J. Miceli, and J. H. Eberly, 'Diffraction-Free Beams,' Phys. Rev. Lett. 58, 1499-1501 (1987).
[9] D. McGloin, and K. Dholakia, 'Bessel beams: diffraction in a new light,' Contemporary Physics 46, 15-28 (2005).
[10] C. Lopez-Mariscal, J. C. Gutierrez-Vega, and S. Chavez-Cerda, 'Production of high-order Bessel beams with a Mach-Zehnder interferometer,' Appl. Optics 43, 5060-5063 (2004).
[11] J. Arlt, and K. Dholakia, 'Generation of high-order Bessel beams by use of an axicon,' Opt. Commun. 177, 297-301 (2000).
[12] Y. Mushiake, K. Matsumura, and N. Nakajima, 'GENERATION OF RADIALLY POLARIZED OPTICAL BEAM MODE BY LASER OSCILLATION,' Proceedings of the IEEE 60, 1107-1109 (1972).
[13] N. Passilly, R. de Saint Denis, K. Ait-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, 'Simple interferometric technique for generation of a radially polarized light beam,' Journal of the Optical Society of America A: Optics and Image Science, and Vision 22, 984-991 (2005).
[14] M. Stalder, 'Active and passive optical components using liquid crystals,' (SPIE -International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, San Jose, CA, United States, 1996), pp. 30-39.
[15] M. Stalder, and M. Schadt, 'Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,' Optics Letters 21, 1948 (1996).
[16] M. I. Haftel, C. Schlockermann, and G. Blumberg, 'Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons,' Phys. Rev. B 74, 11 (2006).
[17] M. I. Haftel, C. Schlockermann, and G. Blumberg, 'Role of cylindrical surface plasmons in enhanced transmission,' Appl. Phys. Lett. 88, 3 (2006).
[18] 林鼎晸, '奈米直寫儀用表面電漿光學元件之理論與實驗,' (2007).
[19] Q. Zhan, and J. R. Leger, 'Focus shaping using cylindrical vector beams,' Optics Express 10, 324-331 (2002).
[20] K. S. Youngworth, and T. G. Brown, 'Focusing of high numerical aperture cylindrical-vector beams,' Optics Express 7, 77-87 (2000).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40750-
dc.description.abstract在1959年Richard 和 Wolf 這兩位科學家調整雷射的共振腔而產生了放射狀(radial)偏極光束,由於放射偏極光束具有特殊的電場特性,因此在這些年來放射偏極光束被廣泛的討論及應用。
在本研究團隊的先前研究中,發現利用次波長的圓環結構在線偏極態的入射光情況下可以產生長景深的零階貝索光束(Bessel beam),而在我的研究中我嘗試將放射偏極態以及方向(azimuthal)偏極態的雷射光入射到次波長圓環結構,發現可以產生一階的貝索光束,而所產生的聚焦光點遠比之前利用其他方法產生來的小,並且達到次波長的等級。
由於方向偏極態光束的聚焦電場可以分為縱向以及橫向偏極態,因此焦點的電場分佈以及聚焦圖形都會與該聚焦的光學元件之數值孔徑有很密切的關係,此一特性在本文的研究過程中發生了很大的效應,並因而針對次波長圓型結構可以產生長景深此特性提出此元件為具有連續數值孔徑之光學元件的看法。經由比較傳統的高斯透鏡以及此次波長光學元件,本文說明了次波長圓環結構聚焦特性與數值孔徑的關係,同時也提出了次波長圓環結構在放射偏極態光束入射時聚焦電場的數學模型。
zh_TW
dc.description.abstractThe three-dimensional electromagnetic field dispersion of focused beam is an important issue for optical applications. Since 1959, Richard and Wolf had generated radially polarized (RP) beam by optical mechanism. After that, radial vector beam has attracted a great deal of discussions in recent years.
Using sub-wavelength annular aperture (SAA) structure is a brand new method to generate non-diffraction doughnut beam. When the RP beam is focused by SAA structure, the focused RP beam in free space was found to propagate in the J1 Bessel beam format, Both simulation and experimental results showed that sub-wavelength focal spot and long depth of focus were achieved in the above-mentioned combinations.
The electric field at focal plane of RP beam can be separated into longitudinal and transverse components. Due to their features and different intensity distribution, there are special phenomena in the electrical field at focus. For example, the intensity ratio of longitudinal and transversal component are found to be related to the numerical aperture (NA) of focal lens used and the focal pattern also depends on NA.
For the long depth of focus of SAA structure by RP beam incidence, we proposed that SAA structure is a continuous numerical aperture (NA) optical element. To verify this proposition, we compared the properties of SAA structure with the traditional objective lens illuminated by RP beam.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:58:43Z (GMT). No. of bitstreams: 1
ntu-97-R95543015-1.pdf: 6139628 bytes, checksum: 6cde8cedc7e1f505a336bb17f4125d93 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
目錄 iv
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景 2
1.3 研究目的 2
1.4 論文架構與概要 3
第二章 原理 4
2.1 金屬次波長結構之異常穿透現象 4
2.2 表面電漿 5
2.2.1 表面電漿的共振條件 5
2.2.2 激發表面電漿 7
2.3 貝索光束(Bessel Beam) 9
2.3.1 零階貝索光束 10
2.3.2 高階貝索光束 11
2.4 柱狀偏極態(Cylindrical vector polarization) 13
2.4.1 Cylindrical偏極態光束的簡介 13
2.4.2 Radial偏極態光束之產生方法 13
第三章 次波長圓環聚焦實驗與模擬 16
3.1 實驗光路架設與校準 16
3.1.1 光路架設 16
3.1.2 液晶偏極板元件架構 17
3.1.3 液晶偏極板(LC polarizer)及光路的校準 18
3.2 有限時域差分法(FDTD)模擬環境設定 20
3.3 柱狀偏極態對次波長圓環聚焦影響之實驗與模擬 22
3.3.1 Cylindrical偏極態在SAA狹縫中的模態分析 22
3.3.2 利用次波長圓環產生一階貝索光束 30
3.3.3 分析及討論實驗與模擬之聚焦長度差異 32
第四章 提出次波長圓環為連續數值孔徑光學元件之適用性 38
4.1 高斯聚焦電場分部分析 38
4.1.1 柱狀(cylindrical)偏極態聚焦模型 38
4.1.2 光束聚焦之電場分析 40
4.1.3 環狀光束聚焦之電場分析 44
4.2 SAA結構聚焦之電場分析 45
4.3 提出radial偏極態聚焦電場數學模型 47
第五章 奈米直寫儀系統 50
5.1 奈米直寫儀簡介 50
5.2 結合顯微系統之奈米直寫儀光機架設 50
5.3 曝光實驗與結果討論 53
5.3.1 顯微系統光路校正 53
5.3.2 曝光結果與討論 54
5.5 結論 55
第六章 結論與未來展望 56
6.1 結論 56
6.5 未來展望 56
參考資料 58
dc.language.isozh-TW
dc.title以連續數值孔徑模式陳述次波長圓環光學效應的適切性研究zh_TW
dc.titleExperiement and simulation on the continuous numerical aperture proposition of sub-wavelength annular apertureen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.advisor-orcid,吳光鐘(wukc@spring.iam.ntu.edu.tw)
dc.contributor.oralexamcommittee張所鋐(Shuo-Hung Chang),高甫仁(Fu-Jen Kao),葉吉田(Ji-Tian Yeh)
dc.subject.keyword表面電漿,次波長結構,貝索光束,輻射狀偏極態,連續數值孔徑,zh_TW
dc.subject.keywordsurface plasmon,sub-wavelength structure,Bessel beam,radial polarization,continuous numerical aperture,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2008-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved