請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40743完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周仲島(Jong-Dao Jou) | |
| dc.contributor.author | Dan-Rung Chen | en |
| dc.contributor.author | 陳淡容 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:58:21Z | - |
| dc.date.available | 2008-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-28 | |
| dc.identifier.citation | 王時鼎,1994:侵台颱風地形影響實測研究及有關問題。海峽兩岸天氣與氣候學
術研討會論文彙編,324-338 頁。 周仲島、顏健文、趙坤,2004:台灣地區登陸颱風降雨結構之雷達觀測。大氣科 學,32,183-204。 林雨我與徐晉淮,1988:侵襲台灣颱風之分析研究。氣象學報,三十四卷三期, 196-215 頁。 林昀瑱,2006:登陸颱風降雨回波中尺度結構特徵之分析與比較:2005 年三個 強烈颱風(海棠、泰利、龍王)。國立臺灣大學大氣科學研究所碩士論文,共 111 頁。 陳泰然、李清勝、王時鼎、紀水上及周仲島,1993:豪雨預報技術改進之研究— 颱風部份研究計畫。交通部中央氣象局82 年度委託研究計畫, CWB82-2M-10。 謝信良、王時鼎、鄭明典、葉天降及丘台光,2000:建立台灣地區颱風預報輔助 系統之研究第三階段—侵台颱風降雨預報之應用研究(二)。中央氣象局氣象 科技研究中心,專題研究報告CWB88-1M-01,449 頁。 顏健文,2003:侵台颱風降雨結構之時空變化特徵。國立臺灣大學大氣科學研究 所碩士論文,共98 頁。 Burpee, R. W., and M. L. Black, 1989:Temporal and spatial variations of rainfall near the centers of two tropical cyclones. Mon. Wea. Rev., 117, 2204-2218. Bender, M. A., 1997:The effect of relative flow on the asymmetric structure of the interior of hurricanes. J. Atmos. Sci., 54, 703-724. Browning, K. A., and F. F. Hill, 1981:Orographic rain. Weather, 36, 326-329. Chan, J. C. L., and X. Liang, 2003:Convective asymmetries associated with tropical cyclone landfall. Part I: f -plane simulations. J. Atmos. Sci., 60, 1560–1567. _____, K. S. Liu, Simon E. Ching, and Edwin S. T. Lai, 2004:Asymmetric distribution of convection associated with tropical cyclones making landfall along the south China cosat. Mon. Wea. Rev., 132, 2410-2420. 59 Chang, C.-P., 1970:Westward propagating cloud patterns in the Tropical Pacific as seen from time-composite satellite photographs. J. Atmos. Sci., 27, 133-138. _____, T.-C. Yeh, and J. M. Chen, 1993:Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Wea. Rev., 121, 734-752. Chen, S. S., J. A. Knaff, F. D. Marks Jr., 2006:Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Mon. Wea. Rev., 134, 3190-3208. Chen, Y. and M. K. Yau, 2003:Asymmetric structures in simulated landfalling hurricane. J. Atmos. Sci., 60, 2294-2312. Corbosiero, K. L., and J. Molinari, 2002:The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones. Mon. Wea. Rev., 130, 2110-2123. _____, and _____, 2003:The Relationship between Storm Motion, Vertical Wind Shear, and Convective Asymmetries in Tropical Cyclones. J. Atmos. Sci., 60, 366-376. DeMaria, M., and J. Kaplan, 1993:Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 1133-1147. _____, 1996:The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076-2087. Frank, W. M., 1977:The structure and energetics of the tropical cyclone. Part I:Storm structure. Mon. Wea. Rev., 105, 1119-1135. _____, and E. A. Ritchie, 1999:Effects on environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044-2061. _____, and _____, 2001:Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249-2269. Franklin, J. L., S. J. Lord, S. E. Feuer, and F. D. Marks Jr., 1993:The kinematic structure of Hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon. Wea. Rev., 121, 2433-2451. Geerts, B., G. M. Heymsfield, L. Tian, J. B. Halverson, A. Guillory, and M. I. Mejia, 2000:Hurricane Georges’s landfall in the Dominican Republic: detailed airborne Doppler radar imagery. Bull. Amer. Meteor. Soc., 81, 999-1018. Gray W. M., 1968:Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700. 60 Hanley, D. E., J. Molinari, and D. Keyser, 2001:A composite study of the interactions between tropical cyclones and upper tropospheric troughs. Mon. Wea. Rev., 129, 2570-2584. Jones S. C., 1995:The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc, 121,821-851. _____, 2000a:The evolution of vortices in vertical shear. II: Large-scale asymmetries. Quart. J. Roy. Meteor. Soc, 126,3137-3159. _____, 2000b:The evolution of vortices in vertical shear. III: Baroclinic vortices. Quart. J. Roy. Meteor. Soc, 126, 3161-3185. Lee, C. S., L. R. Hwang, H. S. Shen, and S. T. Wang, 2006:A climatology model for forecasting typhoon rainfall in Taiwan. Natural Hazards, 37, 87-105. Lonfat, M., F. D. Marks Jr., and S. S. Chen, 2004:Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective. Mon. Wea. Rev., 132, 1645-1660. Marks, F. D., Jr., 1985:Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909-930. _____, and J. F. Gamache, 1992:Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I:Kinematic structure. J. Atmos. Sci., 49, 919-942. Merrill, R. T., 1988:Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 1678-1687. Parrish, J. R., R. W. Burpee, F. D. Marks, Jr. and R. Gerbe, 1982:Rainfall patterns observed by digitized radar during the landfall of Hurricane Frederic (1979). Mon. Wea. Rev., 110, 1933-1944. Rodgers, E. B., S. W. Chung, and H. F. Pierce, 1994:A satellite observational and numerical study of precipitation characteristics in western north Atlantic tropical cyclones. J. Appl. Meteor., 33, 129-139. Rogers, R., S. Chen, J. Tenerelli, H. Willoughby, 2003:A Numerical Study of the Impact of Vertical Shear on the Distribution of Rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 1577-1599. Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984:Stationary and moving convective bands in hurricanes. J. Atmos. Sci., 41, 3189-3211. 61 Wu, C.-C. and Y.-H. Kuo, 1999:Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67-80. _____, T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002:Rainfall simulation associated with Yyphon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 1001-1015. Yeh, T.-C., and R. L. Elsberry, 1993a:Interaction of typhoons with the Taiwan orography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 3193-3212. _____, and _____, 1993b:Interaction of typhoons with the Taiwan orography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213-3233. Zehr, R. M., 1992:Tropical cyclogenesis in the Western North Pacific. NESDIS 61, NOAA Tech. Rep., 181 pp. [Available from National Environmental Satellite, Data and Information Service, Washington, DC 20233]. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40743 | - |
| dc.description.abstract | 本研究使用中央氣象局劇烈天氣監測系統(QPESUMS)的雷達回波整合資料,分析自2004 至2007 年期間13 個侵台颱風降雨結構特徵在登陸前後的變化。將颱風的回波資料分別做軸對稱和非軸對稱的運算,進一步討論在不同颱風路徑、環境垂直風切、颱風移動速度、以及季節等因素下,颱風降雨結構的變化。
分析結果顯示:(1)路徑有打轉的颱風,其內核區(距中心100 公里以內區域)的降雨率在轉向前達最大值,隨後迅速遞減,因此在登陸時強度已減弱許多。而路徑無打轉的颱風其降雨率在登陸前大致上會遞增,在登陸時達最大值。碧利斯和梧提颱風由於結構鬆散情況例外。(2)環境垂直風切較大(850-200hPa≧7.5ms-1)的颱風,在垂直風切左側會有較強的降雨回波。而環境垂直風切較小的颱風,其 風切左右兩側之降雨分布較為對稱。弱風切條件下有幾個個案在內核區風切左側有較強回波,此與國外利用閃電和衛星資料的統計結果相當類似。(3)所有分析颱風在登陸前的移動速度皆大於5 ms-1,但是並無明顯最大回波集中在移動前緣的右側,此與過去海上之研究結果有所差異。(4)12 月份侵台之南瑪都颱風,外圍雨帶因與東北季風共伴而產生強回波,出海後因為東北季風較乾冷的空氣侵 入,使得颱風回波迅速消散。 | zh_TW |
| dc.description.abstract | Radar reflectivity data of QPESUMS system of Taiwan CWB is used to analyze changes in the rainfall structure of typhoons before and after landfall. This study covers 13 typhoons which made landfall on Taiwan from 2004 to 2007. Radar reflectivity data is averaged with axial symmetric and non-axial symmetric calculation. And changes in the rainfall structure of typhoon are discussed when typhoons were under different tracks, environmental vertical shear, translational speed, and seasons.
The results indicate: (1) If the track of typhoon made loop before landfall, the rainfall rate in inner core (r<100km) of typhoon increases to maximum before making loop, and then decreases sharply. However, if the track of typhoon didn’t make loop before landfall, the rainfall rate increases to maximum at landfall. The rainfall structures of Typhoon Bilis and Wutip are scrappy and are the exceptions. (2) When the environmental vertical shear is strong (i.e., 850-200hPa≧7.5ms-1), the larger radar reflectivity will be found out the left-hand side of the vertical shear vector. When the shear is weak, the rainfall distribution is more symmetric. However, some typhoons when vertical shear is weak, there is larger radar reflectivity in left side of vertical shear vector in some typhoons. This result is rather similar with results compiled by using lightening and satellite data. (3) All the 13 cases, the translational speed is larger than 5 ms-1. However, there is not larger radar eflectivity in the front and right of motion vector. (4) Typhoon Nanmadol made landfall on Taiwan on December. The outer rainband of typhoon combining with northeasterly monsoon induced strong reflectivity. When Typhoon Nanmadol left Taiwan, reflectivity dissipated rapidly because of incursion of drier and colder air. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:58:21Z (GMT). No. of bitstreams: 1 ntu-97-R94229010-1.pdf: 29875312 bytes, checksum: a2ef9824513d504c86e02f38cadf1fed (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書......................... I
致謝............................... II 中文摘要............................. IV 英文摘要............................. V 目錄............................................................................ VI 表錄........................................ IX 圖錄......................................................................................................................... X 第一章 前言................................................ 1 1-1 論文回顧................................. 1 1-2 研究動機與目的....................................... 6 第二章 資料來源與處理......................... 7 2-1 資料來源........................................... 7 2-2 歐洲中長期天氣預報中心(ECMWF)資料........................................ 7 2-3 雷達資料........................... 8 2-4 雷達資料前置處理....................... 9 2-5 研究分析方法.......................... 10 2-5-1 回波環狀平均、二分法與四分法回波空間平均隨時間變化.. 10 2-5-2 降雨強度分析........................ 11 第三章 颱風生命史和綜觀環境描述.................. 12 3-1 敏督利颱風(2004 年7 月).................... 12 3-2 納坦颱風(2004 年10 月)...................... 13 3-3 南瑪都颱風(2004 年11 月)........................ 14 3-4 海棠颱風(2005 年7 月)....................................... 15 VII 3-5 泰利颱風(2005 年8 月) ....................... 16 3-6 龍王颱風(2005 年9 月) ....................... 17 3-7 碧利斯颱風(2006 年7 月) ......................... 18 3-8 凱米颱風(2006 年7 月) .......................... 19 3-9 寶發颱風(2006 年8 月) ....................... 20 3-10 帕布颱風(2007 年8 月) ..................... 21 3-11 梧提颱風(2007 年8 月) ..................... 21 3-12 聖帕颱風(2007 年8 月) ..................... 22 3-13 柯羅莎颱風(2007 年10 月) ..................... 23 第四章 登陸颱風降雨結構特徵分析................. 25 4-1 敏督利颱風(2004 年7 月).................... 25 4-2 納坦颱風(2004 年10 月)...................... 27 4-3 南瑪都颱風(2004 年11 月)..................... 29 4-4 海棠颱風(2005 年7 月)..................... 31 4-5 泰利颱風(2005 年8 月) ......................... 33 4-6 龍王颱風(2005 年9 月) .................... 34 4-7 碧利斯颱風(2006 年7 月) ................... 36 4-8 凱米颱風(2006 年7 月) ....................... 38 4-9 寶發颱風(2006 年8 月) ....................... 39 4-10 帕布颱風(2007 年8 月) .......................................... 41 4-11 梧提颱風(2007 年8 月) ..................... 43 4-12 聖帕颱風(2007 年8 月) ..................... 44 4-13 柯羅莎颱風(2007 年10 月) ..................... 46 第五章 討論............................... 49 5-1 颱風降雨結構與移動速度之關係............................................................ 49 5-2 颱風降雨結構與垂直風切之關係............................................................ 50 VIII 5-3 颱風降雨結構與路徑之關係.................................................................... 51 5-4 颱風降雨結構與颱風強度之關係............................................................ 52 5-5 其他環境因素............................................................................................ 53 5-6 特殊特徵之個案描述................................................................................ 54 第六章 總結.......................................................................................................... 56 參考文獻........................................................................ 58 圖表.......................................................................................................................... 62 附錄........................................................................................................................ 115 | |
| dc.language.iso | zh-TW | |
| dc.subject | QPESUMS | zh_TW |
| dc.subject | 登陸 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 颱風降 | zh_TW |
| dc.subject | 雨結構 | zh_TW |
| dc.subject | 卜勒 | zh_TW |
| dc.subject | 達 | zh_TW |
| dc.subject | 達回波 | zh_TW |
| dc.subject | landfall typhoon | en |
| dc.subject | radar | en |
| dc.subject | Doppler radar | en |
| dc.subject | precipitation structure change | en |
| dc.title | 臺灣地區登陸颱風所伴隨之中尺度降雨特徵 | zh_TW |
| dc.title | Mesoscale precipitation features associated with landfall typhoons in the taiwan area | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李清勝,吳俊傑,陳泰然,郭鴻基 | |
| dc.subject.keyword | 登陸,颱風,颱風降,雨結構,都,卜勒,雷,達,雷,達回波,QPESUMS, | zh_TW |
| dc.subject.keyword | landfall typhoon,precipitation structure change,Doppler radar,radar, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 29.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
