Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40729
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾仁賜
dc.contributor.authorTsun-Tse Chenen
dc.contributor.author陳存澤zh_TW
dc.date.accessioned2021-06-14T16:57:45Z-
dc.date.available2008-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-28
dc.identifier.citation王斐能。2005。溫室栽培下長期施用不同有機質肥料對土壤性質影響。有機肥料之施用對土壤與作物品質之影響研討會論文集,pp. 97-102,國立台灣大學農業化學系,台北,台灣。
周恩存。2006。不同施肥管理對土壤之磷及氮劃份之影響。國立台灣大學農業化學研究所碩士論文,台北,台灣。
張禮愷。1987。土壤酶學。科學出版社。pp. 100-262。北京,中國。
連深。1995。有機質肥料之肥效試驗及結果判斷之若干觀點。有機質肥料合理施用技術研討會專刊,pp.110-125。台灣省農業試驗所,台中,台灣。
陳佩瑜。2005。玉米-水稻輪作系統下施肥管理對根圈土壤酵素活性及細菌族群結構之影響。國立台灣大學農業化學研究所碩士論文,台北,台灣。
黃美華。2005。不同施肥管理對經八年水旱田輪作系統的玉米與水稻產量及養分吸收的影響。國立台灣大學農業化學研究所碩士論文,台北,台灣。
廖彩汝。2001。不同施肥處理對土壤微生物多樣性之探討。國立中興大學土壤環境科學系碩士論文。台中。台灣。
蔡永皞。張耘誠。徐卉明。鍾仁賜。2005。設施內施用不同量有機肥料對土壤性質變遷及蔬菜氮吸收之影響。中華農學會報,6:229-244。
賴朝明、洪崑煌。1991。台灣主要耕地土壤尿素酶、酸性磷酸酯酶及去氫酶之活性及其與土壤性質的關係。中國農業化學會誌,29: 382-395。
霍嘉恒。2002。不同有機肥料與不同施用量對萵苣與水稻生長與養分吸收的影響。國立台灣大學農業化學研究所碩士論文,台北,台灣。
羅裕堂。2002。有機栽培下土壤微生物多樣性之探討。國立中興大學土壤環境科學系碩士論文。台中。台灣。
Anderson, J. P. E and K. H. Domsch.1973. Quantification of bacterial and fungal contributions to soil respiration. Arch. Mikrobiol., 93:113-127.
Anderson, T. H. and T. R. G. Gray. 1990. Soil microbial carbon uptake characteristics in relation to soil management. FEMS Microbiol. Ecol., 74: 11-20.
Anthonisen, A. C., R. C. Loehr, T. B. S. Prakasam, and E. G. Srinath. 1976. Inhibition of nitrification by ammonia and nitrous acid. J. Wat. Pollut. Control Fed., 48: 835-852.
Asghar, M. and Y. Kanehiro. 1976. Effects of sugarcane trash and pineapple residue incorporation on soil nitrogrn, pH and redox potential. Plant Soil., 44: 209-218.
Asghar, M. and Y. Kanehiro. 1980. Effects of sugarcane trash and pineapple residue on soil pH, redox potential, extractable Al, Fe and Mn. Trop. Agric., 57: 245-258.
Ball, D. F. 1964. Loss-on ignition as estimate of organic matter and organic carbon in non-calcareous soils. J. Soil Sci., 15: 84-92.
Bandick, A. K. and R. P. Dick. 1999. Field management effects on soil enzyme activities. Soil Biol. Biochem., 31: 1471-1479.
Bending, G., D. C. Putland, and F. Rayns. 2000. Changes in microbial community metabolism and labile organic matter fractions as early indicators of the impact of management on soil biological quality. Biol. Fertil. Soils, 31: 78-84.
Berg, P. and P. J. A. Rosswall. 1985. Ammonium oxidizer numbers, potential and actual oxidation rates in two Swedish arable soils. Biol. Fertil. Soils, 1: 131-140.
Biolog. 1993. Instructions for use of the Biolog GP and GN microplates. Biolog Inc., Hayward, Calif., USA.
Blagodatskaya, E. V. and T. H. Anderson. 1998. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils. Soil Biol. Biochem., 30: 1269-1274.
Bolan, N. S., M. J. Hedley, and R. E. White. 1991. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil, 134: 53-63.
Bossio, D. A. and K. M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol., 35: 265-278.
Bossio, D. A., K. M. Scow, N. Gunapala, and K. J. Graham. 1998. Determinants of Soil microbial communities: Effects of agricultural management, seasonm and soil type on phospholipid fatty acid profiles. Microb. Ecol., 36: 1-12.
Bray, R. H. and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59: 39-45.
Bremner, J. M. 1965. Inorganic forms of nitrogen, pp. 1149-1178. In “Methods of Soil Analysis. Part 2” C. A. Black (ed.). Agro. No. 9, ASA-SSSA, Wisconsin, USA.
Bremner, J. M., and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification on Kjeldahl method to include nitrate and nitrite, pp. 621-622. In“Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.). Academic Press, New York, USA.
Breure, A.M., 2005. Ecological soil monitoring and quality assessment. pp. 281-305. In: Vital Soil: Function, Value and Properties. Doelman, P., H. J. P. Eijsackers (ed.). Elsevier, Amsterdam, the Nethuland.
Broadbent, F. E. 1948. Nitrogen release and carbon loss from soil organic matter during decomposition of added plant residues. Proc. Soil Sci. Soc. Am., 12: 246-249.
Brookes, P. C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils, 19: 269-279.
Chang, E. D., R. S. Chung, and Y. H. Tsai. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr., 53: 132-140.
Chapman, H. D. 1966. Diagnostic Criteria for Plants and Soils, pp. 484-499. Univ. of Calif., Riverside, USA.
Ceccanti, B., B. Pezzarossa, F. J. Gallardo-Lancho, and G. Masciandaro. 1993. Biotest as markers of soil utilization and fertility. Geomicrobiol. J., 11: 309-316.
Dalal, R. C. 1998. Soil microbial biomass-what do the numbers really mean? Aust. J. Exp. Agric., 38: 649-665.
Deng, S. P. and M. A. Tabatabai. 1996. Effect of tillage and residue management on enzyme activities in soils: II. Glycosidase. Biol. Fertil. Soils, 22: 208-213.
Deng, S. P. and M. A. Tabatabai. 1997. Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and acrylsulfatase. Biol. Fertil. Soils, 24: 141-146.
De Ruiter, P. C., J. C. Moore, K. B. Zwart, L. A. Bouwman, J. Hassink, J. Bloem, J. A. DeVos, J. C. Y. Marinissen, and W. A. M. Didden. 1993. Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J. Appl. Ecol., 30: 95-106.
De Vries, W. and A. Breeuwsma. 1987. The relation between soil acidification and element cycles. Water, Air, Soil Pollu., 35: 293-310.
Diaz-Marcote I. and A. Polo. 1995. MSW compost for the restoration of degraded soil. In “World Congress on Waste Management.” Proc. of the 25th Anniversary of the International Solid Waste Association. 15th-20th October, 1995. ISWA, Vienna (CD Rom).
Dick, R. P., D. E. Rasmassen, and E. A. Kerle. 1988. Influence of longterm residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system. Biol. Fertil. Soil, 6: 159-164.
Dick, R. P. 1992. A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosys. Environ., 40: 25-36.
Dick, R. P., P. Thomas, and J. J. Halvorson. 1996. Standardized methods, sampling, and pretreatment, pp. 107-121. In “Methods for Assessing Soil Quality.” J. W. Doran and A. J. Jones (eds.). SSSA Special Publication No. 49. SSSA, Madison, Wisconsin, USA.
Dodor, D. E. and M. A. Tabatabai. 2002. Effect of cropping systems and microbial biomass on arylamidase activity in soil. Biol. Fertil. Soils, 35: 253-261.
Dodor D. E., and M. A. Tabatabai. 2003. Effect of cropping systems on phosphatases in soils. J. Plant Nutr. Soil Sci., 166: 7-13.
Doran, J. W., D. C. Coleman, D. F. Bezdicek, and B. A. Stewart. 1996. Defining Soil Quality for a Sustainable Environment. American Society of Agronomy, SSSA Special Publication No. 35, Madison, Wisconsin, USA.
Elfstrand S., and B. Bath, A. Martensson. 2007. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity
and nutrient levels in leek. Appl. Soil Ecol., 36: 70-82.
Enwall, K., L. Philippot, S. Hallin. 2005. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl. Environ. Microbiol., 71: 8335-8343.
Epstein, E. and H. Kohnke. 1957. Soil aeration as affected by organic matter application. Soil Sci. Soc. Am. Proc., 21: 585-588.
Federle T. W. 1986. Microbial distribution in soil - new techniques, pp. 493-498. In “Perspectives in Microbial Ecology.” Megusar F. and M. Gantar (eds.). Symp. Microb. Ecol., Ljubjana. American Society for Microbiology, Washington, D.C.
Ferris, M. J. and D. M. Ward. 1997. Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol., 63: 1375-1381.
Frostegard, A., A. Tunlid, and E. Baath. 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. J. Microbiol. Methods., 14: 151-163.
Frostegard, A., E. Baath, and A. Tunlid. 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem., 25: 723–730.
Frostegard, A. and E. Baath. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils, 22: 59–65.
Garland, J. L. and A. L. Mills. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol., 57: 2351–2359.
Garcia, C., T. Hernandez, J. Albadalejo, V. Castillo, and A. Roldan. 1998. Revegetation in Semiarid zones: influence of terracing and organic refuse on microbial activity. Soil Sci. Soc. Am. J., 62: 670–676.
Hodgson, J. F., W. L. Lindsay, and J. F. Trierweiler. 1966. Micronutrient cation complexing in soil solusion. II Complexing of znic and copper indisplacing solusion from calcareous soil. Soil Sci. Soc. Am. Proc., 30: 723-726.
Horwitz, W. 1980. Official Methods of Analysis of the Association of Official Analytical Chemists, pp. 181-182. Association of Official Analytical Chemists, Gaithersburg, USA.
Hue, N. V., I. Amen, and J. Hansen. 1989. Aluminum detoxification with green manure. Common. Soil Sci. Plant Anal., 20: 1499-1511.
Ingham E. R., and D. C. Coleman. 1984. Effects of streptomycin, cycloheximide, fungizone, captan, carbofuran, cygon, and PCNB on soil microorganisms. Microb. Ecol., 10: 345-358.
Jordan, D., R. J. Kremer, W. A. Bergfield, K. Y. Kim, and V. N. Cacnio. 1995. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biol. Fertil. Soils, 19: 297-302.
Jordan, D., R. J. Binnerup, and J. Sorensen. 1996. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the youn barley rhizosphere. Soil Biol. Biochem., 28: 47-54.
Kandeler E. and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils, 8: 199-202.
Kemmitt S. J., D. Wright, K. W. T. Goulding, and D. L. Jones. 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem., 38: 898–911.
Konopka, A., L. Oliver, and R. F. Turco Jr. 1998. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb. Ecol., 35: 103–115.
Kroppenstedt, R. M. 1985. Fatty acid and menaquinone analysis of actinomycetes and related organisms, pp. 173-199.In “Chmical Methods in Bacterial Systematics.” Goodfellow M. and D. E. Minnikin (eds.). Academic Pressm, London, UK.
Ladd, J. N. and J. H. A. Bulter. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem., 4: 19-30.
Landi, L., L. Badalucco, F. Pomare, and P. Nannipieri. 1993. Effectiveness of antibiotics to distinguish the contributions of fungi and bacteria to net nitrogen mineralization, nitrification and respiration. Soil Biol. Biochem., 12: 1771-1778
Loll, M. J. and J. M. Bollag. 1983. Protein transformation in soil. Adv. Agron., 36: 351-382.
McLean, E. O. 1982. Soil pH and lime requirement, pp. 199-224. In“Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.). Academic Press, New York, USA.
Mehlich, A. 1985. Mehlish 3 soil test extractant: A modification of Mehlish 2 extractant. Commun. Soil Sci. Plant Anal., 15: 1409-1416.
Muyzer, G., E. C. Dewaal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59 : 695–700.
Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73: 127–141.
Nannipieri, P., S. Grego, and B. Ceccanti. 1990. Ecological significance of the biological activity in soil, pp. 293–355. In “Soil Biochemistry” vol. 6. Bollag, J. M., Stotzky, G. (eds.), Marcel Dekker, New York, USA.
Nannipieri, P., E. Kandeler, and P. Ruggiero. 2002. Enzyme activities and microbial and biochemical processes in soil, pp. 1-33. In ”Enzymes in the Environment: Activity, Ecology and Applications.” Burns, R.G. and R.P. Dick. (eds.). Marcel Dekker, New York, USA.
Powlson, D. S. 1994. The soil microbial biomass: before, beyond and back, pp. 3-20. In ”Beyond the Biomass-Compositional and Functional Analysis of Soil Microbial Communities. Ritz, K., J. Dignton, and K. E. Giller, (eds.). Wiley, Chichester, US.
Powlson, D. S. and D. S. Jenkinson. 1981. A comparison of the organic matter, biomass adenosine triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils. J. Agric. Sci., 97: 713-721.
Ratledge C. 1988. Gram-negative bacteria, pp. 299-488. In “Microbial lipids.” Ratledge C. and S. G. Wilkinson (eds.), Academic Press, London, England.
Ritz, K., R. E. Wheatley, and B. S. Griffiths. 1997. Effects of animal manure application and crop plants upon size and activity of soil microbial biomass under organically grown spring barley. Biol. Fertil. Soils, 24: 372-377.
Rhoades, J. D. 1982. Soluble salts, pp. 167-178. In“Method of Soil Analysis Part 2 Chemical and Microbiological Properties”, 2nd (ed.), A. L. Page (ed.). Academic Press, New York, USA.
Ros, M., M. T. Hernandez, and C. Garcia. 2003. Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biol. Biochem., 35: 463-469.
Ros, M., J. A. Pascual, M. T. Hernandez, and C. Garcia. 2006. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol. Biochem., 38: 3443-3452.
Simek, M., D. W., Hopkins, J. Kalcik, T. Picek, H. Santruckova, J. Stana, and K. Travnik. 1999. Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biol. Fertil. Soils, 29: 300-308.
Skujins J. 1978. History of abiontic soil enzyme research, pp. 1-49. In ” Soil Enzymes.” R. G. Burns (ed.). Academic Press, New York, USA.
Tabatabai, M. A. and J. M. Bremner. 1972. Arylsulfatase activity of soils. Soil Sci. Soc. Am. Proc., 34: 225-229.
Tabatabai M. A. 1982. Soil enzymes. pp. 903–947 In “Methods of Soil Analysis Part 2 Chemical and Microbiological Properties” A. L. Page (ed.). Academic Press, New York, USA.
Tabatabai M.A. and J. M. Bremner 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil. Biol. Biochem., 1: 301–307.
Tabatabai M. A., and J. M. Bremner. 1970. Arylsulphatase activity of soils. Soil Sci. Soc. Am. Proc., 34: 427-429.
Tabatabai, M. A. 1994. Soil enzyme, pp. 775-833. In “Methods of Soil Analysis, part 2.“Weaver R. W., J. S. Angleo, and P. S. Bottomley (eds.). SSSA, Madison, WI.
Tadano, T., and H. Sakai, 1991. Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Sci. Plant Nutr., 37: 129–140.
Takkar, P. N. 1969. Effect of organic matter on soil iron and manganese. Soil Sci., 108: 108-112.
Thalman, A. 1968. Zur Methodik der Bestimmung der DehydrogenaseaktivitAt im Boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch. Forsch., 21: 249-258.
Thomas, T. D. and R. D. Batt. 1969. Degradation of cell constituents by starved Streptococcus lactis in relation to survival. J. Gen. Microbiol., 58: 347-362.
Torsvik, V., R. Sorheim, and J. Goksoyr. 1996. Total bacterial diversity in soil and sediment communities — a review. J. Ind. Microbiol., 17: 170–178.
Tunlid, A. and D. C. White. 1992. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil, pp. 229-262. In “Soil Biochemistry” Stotzky, G. and J. M. Bollag. (eds.). Marcel Dekker, New York.
Vance, E.D., P. C. Brookes, and D. S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 19: 703-707.
Winding, A. 1994. Fingerprinting bacterial soil communities using biolog microtitre plates, pp. 85-94.In ”Beyond the Biomass” Ritz, K., J. Dighton, and K.E. Giller. (eds.). Wiley Sayce, New York, USA.
Wu J., R. G. Joergensen, B. Pommerening, R. Chaussod, and P. C. Brookes. 1990. Measurement of soil microbial biomass C by fumigation-extraction–An automated procedure. Soil Biol. Biochem., 22: 1167–1169.
Yang, Y. H., J. Yao, S. Hu, and Y. Qi. 2000. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb. Ecol., 39: 72-79.
Zak, J. C., M. R. Willig, D. L. Moorhead, and H. G. Wildman. 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem., 26: 1101–1108.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40729-
dc.description.abstract土壤中之微生物特性為土壤品質重要指標之一。土壤酵素被視為土壤生態系擾動、土壤受污染、作物對有機添加物反應和土壤品質與肥力的指標。穩定及功能多樣的微生物族群對土壤品質是很重要的,土壤的生物多樣性也可當做土壤品質和生態系穩定的指標。本研究之目的在探討經施用不同種類及不同量之有機肥料對土壤性質的影響,分別探討其對土壤化學性質和碳、氮、磷、硫等元素循環相關的土壤酵素活性及土壤微生物族群結構之影響。經多年施用之後分析土壤化學性質、和碳、氮、磷、硫等元素循環相關的土壤酵素活性及以磷脂質脂肪酸分析法瞭解土壤微生物族群結構,以作為農業土壤永續發展及維持土壤環境品質的參考依據。本試驗土壤分別採自三處之試驗田:一、高雄農業改良場旗南分場,試驗設計採完全逢機設計分為六種處理:(一) 對照組 (CK);(二) 化學肥料處理 (CF);(三) 有機肥一倍量處理 (1X);(四) 有機肥二倍量處理 (2X);(五) 有機肥三倍量處理 (3X);(六) 有機肥四倍量處理 (4X)。二、台中農業試驗所玉米與水稻輪作的試驗田,試驗設計採逢機完全區集設計分為七種施肥處理:(一) 對照區 (代號CK);(二) 化學肥料區 (代號Chem);(三) 堆肥區 (代號Comp);(四) 堆肥配合三分之一量化學氮肥區 (代號Comp + 1/3 N);(五) 堆肥配合三分之二量化學氮肥區 (代號Comp + 2/3 N);(六) 綠肥配合三分之一量化學氮肥區 (代號GM + 1/3 N);(七) 泥炭配合三分之一量化學氮肥區 (代號Peat + 1/3 N;泥炭處理)。三、桃園區農業改良場溫網室試驗田,試驗採逢機完全區集設計分為七處理:(一) 牛糞堆肥 (代號CD);(二) 豬糞堆肥 (代號HD);(三) 雞糞堆肥 (代號PM);(四) 大豆粕堆肥 (代號SBM);(五) 豌豆苗殘體堆肥 (代號PC);(六) 輪施區(牛糞堆肥--豌豆苗殘體堆肥--豬糞堆肥--大豆粕--雞糞堆肥)(代號SA);(七) 對照區:未施肥料。研究結果顯示,高雄區農業改良場經七年不同肥料施用量管理,施用與化學肥料處理區三倍氮肥用量的有機肥料 (7,770 kg N ha-1) 為最佳用量,再提高施用量並不會顯著提高土壤有機質含量。土壤所有酵素活性會隨堆肥施用量上升,但在施用與化學肥料處理區三倍與四倍氮肥用量的有機肥料處理間無顯著差異。土壤中細菌、革蘭氏陽性陰性菌、放線菌及真菌族群生質量會隨施用堆肥施用量上升,但超過7,770 kg N ha-1亦不再顯著提高。台中農業試驗所經十二年不同施肥管理及水稻-玉米輪作後,結果顯示,有機碳含量以堆肥加三分之二化學氮肥處理有最高值 (19.7 g kg-1),可能是由於堆肥加三分之二化學氮肥處理施用堆肥之外,其作物產量高,土壤中植物殘體也較多。在本試驗地各處理間土壤酵素活性差異不明顯。綠肥加三分之一化學氮肥處理各土壤微生物族群生質量相較於其他處理高,顯示新鮮有機物施入土壤中,其對微生物影響持續至當季作物栽培結束。而結果顯示不同施肥管理經多年之後的確會對土壤中的微生物多樣性與豐度造成不同的影響。桃園區農業改良場經七年不同施肥管理結果顯示,施用大豆粕會使土壤pH值下降至4.7,且因其礦化速率快,碳、氮亦不會在土壤中累積,導致土壤酵素活性及微生物活性、族群數量下降,建議不連續施用;施用豌豆苗殘體堆肥對微生物族群數量及微生物活性性提高最多。由本研究可知,在溫室條件下,不同的有機物經集約連續處理多年之後,對土壤微生物族群之多樣性與豐度之影響不同。zh_TW
dc.description.abstractMicrobial characteristics of soil have been regarded as important indicators of soil quality. Soil enzyme activities can be used as an index of soil interference, response of crops to organic amendment, soil pollution, soil quality, and fertility. Stable and functional diversity of microbial communities is very important to soil quality. Soil microbial diversity can also be an indicator of soil quality and stabilization of ecology system. The objective of this study was to investigate the effects of different kinds and application rates of organic fertilizers and crop rotation system on soil chemical and biological properties. After long-term application of the different rates and kinds of organic fertilizer, the soils were sampled and the chemical properties, soil enzyme activities related to C, N, P, S cycles, and the microbial communities structure using phospholipid fatty acid (PLFA) analysis were analyzed. Soil samples were taken from three experimental fields: 1. the experiment at KDARES-CBS contains six treatments which were arranged in complete randomized design (CRD): (1) CK (control, without fertilizer), (2) CF (chemical fertilizer treatment), (3) 1X (organic fertilizer with the same amount of N as CF), (4) 2X (organic fertilizer with two fold of N as CF), (5) 3X (organic fertilizer with three fold of N as CF), (6) 4X (organic fertilizer with four fold of N as CF); 2. the experiment at TARI contains seven treatments which were arranged in randomized complete block design (RCBD): (1) CK (control, without fertilizer), (2) Chem (applied chemical fertilizer only), (3) Comp (applied compost only and with the same amount of N as Chem), (4) Comp + 1/3 N (compost combined with one third amount of N as Chem plot), (5) Comp + 2/3 N (compost combined with two third amount of N as Chem plot), (6) GM + 1/3 N (green manure combined with one third amount of N as Chem plot), (7) Peat + 1/3 N (peat combined with one third amount of N as Chem plot); 3. the experiment at TDARES contains seven treatments which were arranged in RCBD: (1) CD (cattle dung manure), (2) HD (hog dung manure), (3) PM (chicken dung manure), (4) SBM (soybean meal), (5) PC (pea seedling residue compost), (6) SA (sequential application of the above five kinds of compost mentioned), (7) Control (without fertilizer). The results indicated that after seven years of different fertilization managements at KDARES-CBS, the 3X treatment was the optimum recommendation application rate of the organic fertilizer. The enzyme activities studied in soil increased with the application rate of organic fertilizer, however, there was no significant difference between 3X and 4X treatments. PLFAs of bacteria, Gram positive bacteria, Gram negative bacteria, actinomycetes and fungi, respectively, also increased with the application rates of organic fertilizer and reached maximum at 3X treatment. There were also no significantly difference effects on soil chemical properties between the 3X and 4X application rates of organic fertilizer. After twelve years of different fertilization managements and rice-corn rotation at TARI, Comp + 2/3 N treatment shared the highest organic matter concentration in the soil. It might be due to the application of compost and the higher crop production resulting in higher amount of crop residues. There were no significant differences among treatments in enzyme activities in the soils of different treatments. The biomass of different microbial communities in GM + 1/3 N treatment was higher than that of other treatments indicating that the effect of fresh residues of green manure applied to soil on microbial lasted till the harvesting of the crop. The results also showed that after 12 years of different fertilization managements have different effect on the diversity and abundance of soil microbes. After seven years of intensive cultivation at TDARES, SBM treatment resulted in the lowest soil pH (4.7), which was due to SBM mineralized rapidly in the soil. The SBM treatment also resulted in the lowest soil enzyme activities and microbial biomass. SBM is not adequate as organic fertilizer applying continuously for crop cultivation. On the other hand, applying PC increased the biomass of different microbial communities, and the highest microbial activities. The study showed that continuously intensive cultivation with applying different organic matter resulted in different effects to soil microbial communities diversity and abundance in the greenhouse.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:57:45Z (GMT). No. of bitstreams: 1
ntu-97-R95623016-1.pdf: 542166 bytes, checksum: f0fdbb48809db002e4d9685b979b8a94 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄
摘要---------------------------------------------------------------------------------------------------I
Abstract---------------------------------------------------------------------------------------------III
目錄-------------------------------------------------------------------------------------------------VI
圖目錄---------------------------------------------------------------------------------------------VII
表目錄----------------------------------------------------------------------------------------------IX
附錄目錄--------------------------------------------------------------------------------------------X
前言--------------------------------------------------------------------------------------------------1
前人研究--------------------------------------------------------------------------------------------3
材料與方法-----------------------------------------------------------------------------------------8
結果與討論----------------------------------------------------------------------------------------24
一、 高雄區農業改良場不同施肥管理對土壤化學、生物性質、酵素活性及微生物族群的影響----------------------------------------------------------------------------24
二、 台中農業試驗所不同施肥管理對土壤化學、生物性質、酵素活性及微生物族群的影響-------------------------------------------------------------------------------46
三、 桃園區農業改良場不同施肥管理對土壤化學、生物性質、酵素活性及微生物族群的影響----------------------------------------------------------------------------65
結論-------------------------------------------------------------------------------------------------85
參考文獻-------------------------------------------------------------------------------------------87
附錄----------------------------------------------------------------------------------101
dc.language.isozh-TW
dc.subject磷脂質脂肪酸分析zh_TW
dc.subject施肥管理zh_TW
dc.subject土壤酵素zh_TW
dc.subject微生物生質量zh_TW
dc.subject微生物族群zh_TW
dc.subjectfertilization managementen
dc.subjectphospholipid fatty acid analysisen
dc.subjectmicrobial communitiesen
dc.subjectmicrobial biomassen
dc.subjectsoil enzymeen
dc.title不同的施肥管理對土壤化學性質、酵素活性及微生物族群結構的影響zh_TW
dc.titleEffect of different fertilization managements on soil
chemical properties, enzyme activities, and microbial communities
en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee譚鎮中,賴朝明,陳建德,張義宏
dc.subject.keyword施肥管理,土壤酵素,微生物生質量,微生物族群,磷脂質脂肪酸分析,zh_TW
dc.subject.keywordfertilization management,soil enzyme,microbial biomass,microbial communities,phospholipid fatty acid analysis,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2008-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
529.46 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved