請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40723
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳信志(Shinn-Chih Wu) | |
dc.contributor.author | Yun Lin | en |
dc.contributor.author | 林昀 | zh_TW |
dc.date.accessioned | 2021-06-14T16:57:30Z | - |
dc.date.available | 2013-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-29 | |
dc.identifier.citation | Austin C. R. 1951. Observations on the penetration of the sperm in the mammalian egg. Aust. J. Sci. Res. 4: 581-596.
Baker, M. A., G. Reeves, L. Hetherington, J. Mu¨ller, I. Baur, and R. J. Aitken. 2007. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS ⁄MS analysis. Proteomics Clin. Appl. 1: 524–532. Baker M. A., L Hetherington., H. Ecroyd, S. D. Roman, and R. J. Aitken. 2004. Analysis of the mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation. J. Cell Sci. 117: 211-222. Beausoleil, S. A., M. Jedrychowski, D. Schwartz, J.E. Elias, J. Villén, J. Li, M. A. Cohn, L. C. Cantley, and S. P. Gygi. 2004. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. U. S. A. 101:12130-12135. Beer A. E., and R. E. Billingham. 1974. The embryo as a transplant. Sci. Am. 230: 36-46. Bedford, J. M. and M. C. Chang. 1962. Removal of decapacitation factor form seminal plasma by high-speed centrifugation. Am. J. Physiol. 202: 179-181. Bezouska, K., J. Sklenár, P. Novák, P. Halada, V. Havlícek, M. Kraus, M. Tichá, and V. Jonáková. 1999. Determination of the complete covalent structure of the major glycoform of DQH sperm surface protein, a novel trypsin-resistant boar seminal plasma O-glycoprotein related to pB1 protein. Protein Sci. 8: 1551-1556 Boer, P. H., C. N. Adra, Y. F. Lau, and M. W. McBurney. 1987. The testis-specific phosphoglycerate kinase gene pgk-2 is a recruited retroposon. Mol. Cell Biol. 7: 3107-3112. Buchachenko, A. L., D. A. Kouznetsov, M. A. Orlova, and A. A. Markarian. 2005. Magnetic isotope effect of magnesium in phosphoglycerate kinase phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 102: 10793-10796. Caballero, I., J. M. Vazquez, M. A. Gil, J. J. Calvete, J. Boca, L. Sanz, I. Parrilla, E. M. Garica, H. Rodriguez-Martinez, and E. A. Maritnez. 2004. Does seminal plasma PSP-I/PSP-II spermadhesin modulate the ability of boar spermatozoa to penetrate homologous oocyte in vitro? J. Androl. 25: 1104-1112. Caballero I, Vazquez JM, Mayor GM, Almiñana C, Calvete JJ, Sanz L, Roca J, Martinez EA. 2008. PSP-I/PSP-II spermadhesin exert a decapacitation effect on highly extended boar spermatozoa. Int. J. Androl. (in press). Campanero-Rhodes, M. A., M. Mene´ndez, J. L. Sa´iz, L. Sanz, J. J. Calvete, and D. Solı´s.2005. Analysis of the stability of the spermadhesin PSP-I/PSP-II heterodimer effects of Zn2+ and acidic pH. FEBS J. 272: 5663-5670. Campanero-Rhodes, M. A., M. Mene´ndez, J. L. Sa´iz, L. Sanz, J. J. Calvete, and D. Solı´s. 2006. Zinc ions induce the unfolding and self-association of boar spermadhesin PSP-I, a protein with a single CUB domain architecture, and promote its binding to heparin. Biochemistry 45: 8227-8235. Chang, M. C., and K. Niwa. 1975. Requirement of capacitation for sperm penetration of zona-free rat eggs. J. Reprod. Fertil. 44: 305-308. Chang, M. C. 1951. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168: 697-698. Chen, K., C. Knorr, G. Moser, K. Gatphayak, and B. Brenig. 2004. Molecular characterization of the porcine testis-specificphosphoglycerate kinase 2 ( PGK2) gene and its association with male fertility. Mamm. Genome 15: 996-1006. Choi, Y. J., S. J. Uhm, S. J. Song, H. Song, J. K. Park, T. Kim, C. Park, and J. H. Kim. 2008. Cytochrome c upregulation during capacitation and spontaneous acrosome reaction determines the fate of pig sperm cells: linking proteome analysis. J. Reprod. Dev. 54: 68-83. Collins, A. M., T. J. Caperna, V. Williams, W. M. Garrett, and J. D. Evans. 2006. Proteomic analyses of male contributions to honey bee sperm storage and mating. Insect. Mol. Biol. 15: 541-549. Demarco I. A., F. Espinosa, J. Edwards, J. Sosnik, J. L. De La Vega-Beltran, J. W. Hockensmith, G. S. Kopf, A. Darszon, and P.E. Visconti. 2003. Involvement of a Na+/HCO3- cotransporter in mouse sperm capacitation. J. Biol. Chem. 278: 7001-7009. Devi KU, Jha K, and Shivaji S. 1999. Plasma membrane-associated protein tyrosine phosphatase activity in hamster spermatozoa. Mol. Reprod. Dev. 53: 42-50. De Jonge, C., C. Barratt, B. M. Gadella, and P. E. Visconti. 2006. The sperm cell. Cambridge university press. PP. 134-169. De Jonge, C., C. Barratt, S. Oehninger, and D. Franken. 2006. The sperm cell. Cambridge university press. PP. 194-216. de Vries, K. J., T. Wiedmer, P. J. Sims, and B. M. Gadella. Caspase-Independent Exposure of Aminophospholipids and Tyrosine Phosphorylation in Bicarbonate Responsive Human Sperm Cells. Biol. Reprod. 68: 2122–2134. Dott, H. M., R. A. Harrison, and G. C Foster. 1979. The maintenance of motility and the surface properties of epididymal spermatozoa from bull, rabbit and ram in homologous seminal and epididymal plasma. J. Reprod. Fertil. 55: 113-124. Egerton, M., and L. E. Samelson. 1994. Biochemical characterization of valosin-containing protein, a protein tyrosine kinase substrate in hematopoietic cells. J. Biol. Chem. 269:11435-11441. Ficarro S., O. Chertihin, V. A. Westbrook, F. White, F. Jayes, P. Kalab, J. A. Marto, J Shabanowitz., J. C. Herr, D. F. Hunt, and P. E. Visconti. 2003. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J. Biol. Chem. 278: 11579-11589. Figey, D., S. P. Gygi, Y. Zhang, J. Watts, M. Gu, and R. Aebersold 1998. Electrophoresis combined with novel mass spectrometry techniques: powerful tools for the analysis of proteins and proteomes. Electrophoresis 19:1811-1818. Gross M. K., D. G. Toscano, and W. A. Jr. Toscano. 1987. Calmodulin-mediated adenylate cyclase from mammalian sperm. J. Biol. Chem. 262: 8672-8676. Galantino-Homer, H. L., H. M. Florman, B. T. Storey, I. Dobrinski, and G. S. Kopf. 2004. Bovine sperm capacitation: assessment of phosphodiesterase activity and intracellular alkalinization on capacitationassociated protein tyrosine phosphorylation. Mol. Reprod. Dev. 67: 487-500. Galantino-Homer H. L., P. E. Visconti, and G. S. Kopf. 1997. Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3'5'-monophosphate-dependent pathway. Biol. Reprod. 56: 707-719. Gadella, B. M., and R. A. Harrison. 2000. The capacitating agent bicarbonate induces protein kinase A-dependent changes in phospholipid transbilayer behavior in the sperm plasma membrane. Development 127: 2407-2420. Hafez, B. and E. S. E. Hafez. 2000. Reproduction in Farm Animals 7th edition. Lippincott Williams & Wilkins. PP. 96-109 Harrison R. A., and N. G. Miller. 2000. cAMP-dependent protein kinase control of plasma membrane lipid architecture in boar sperm. Mol. Reprod. Dev. 55: 220-228. Harrison, R. A., P. J. Ashworth, and N.G. Miller. 1996. Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes. Mol. Reprod. Dev. 45: 378-391. Hekman, A., and P. Rümke. 1969. The antigens of human seminal plasma. With special reference to lactoferrin as a spermatozoa-coating antigen. Fertil. Steril. 20: 312-323. Hillenkamp, F. and M. Karas. 1990. Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization. Methods Enymol. 193: 280-295. Iwamoto, T., H. Tanaka, T. Osada, T. Shinagawa, Y. Osamura, and C. Gagnon. 1993. Origin of a sperm motility inhibitor from boar seminal plasma. Mol. Reprod. Dev. 36: 475-81. Huang S. Y., M. F. Tam, Y. T. Hsu, J. H. Lin, H. H. Chen, C. K. Chuang, M. Y. Chen, Y. T. King, and W. C. Lee. 2005. Developmental changes of heat-shock proteins in porcine testis by a proteomic analysis. Theriogenology 64: 1940-1955. Johnston, D. S., J. Wooters, G. S. Kopf, Y. Qiu, and K. P. Roberts. Analysis of the human sperm proteome. Ann. N. Y. Acad. Sci. 1061: 190-202. Jonáková, V., P. Manásková, M. Kraus, J. Liberda, and M. Tichá. 2000. Sperm surface proteins in mammalian fertilization. Mol. Reprod. Dev. 56: 275-277. Kalab, P., J. Peknicová, á G. Geussov, and J. Moos. 1998. Regulation of protein tyrosine phosphorylation in boar sperm through a cAMP-dependent pathway. Mol. Reprod. Dev. 51: 304-314. Kelly, V. C., S. Kuy, D. J. Palmer, Z. Xu, S. R. Davis, and G. J. Cooper. 2006. Characterization of bovine seminal plasma by proteomics. Proteomics 6: 5826-5833. Kinger, S., and M. Rajalakshmi. 1995. Assessment of the vitality and acrosomal status of human spermatozoa using fluorescent probes. Int. J. Androl. 1: 12-18. Lamb, N. J., A. Fernandez, A. Watrin, J. C. Labbe, and J. C. Cavadore. 1990. Microinjection of p34cdc2 kinase induces marked changes in cell shape, cytoskeletal organization, and chromatin structure in mammalian fibroblasts. Cell 60: 151-165. Lee S. L., and Y. H. Wei. 1994. The involvement of extracellular proteinases and proteinase inhibitors in mammalian fertilization. Biotechnol. Appl. Biochem. 19: 31-40 Lessard, M., M. Lépine, J. J. Matte, M. F. Palin, and J. P. Laforest. 2003. Uterine immune reaction and reproductive performance of sows inseminated with extended semen and infused with pooled whole dead semen. J. Anim. Sci. 81:2818-2825. Leclerc P., E. de Lamirande, and C. Gagnon. 1996. Cyclic adenosine 3',5'monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol. Reprod. 55: 684-692. Leclerc, P., E. de Lamirande, and C. Gagnon. 1997. Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic. Biol. Med. 22: 643-656. Leyton, L., and P. Saling. 1989. 95 kDa sperm proteins bind ZP3 and serve as tyrosine kinase substrates in response to zona binding. Cell 57:1123-1130. Lieuvin, A., J.C. Labbe, M. Doree, and D. Job. 1994) Intrinsic microtubule stability in interphase cells. J. Cell Biol. 124: 985-996. Manning, D. R., J. DiSalvo, and J .T. Stull. 1980. Protein phosphrylation: quantitative analysis in vivo and in intact cell system. Mol. Cell Endocrinol. 19: 1-19. Marshall, A. G., C. L. Hendrickson, G. S. Jackson. 1998. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17: 1-35. Mahony, M. C., and T. Gwathmey. 1999. Protein tyrosine phosphorylation during hyperactivated motility of cynomolgus monkey (Macaca fascicularis) spermatozoa. Biol. Reprod. 60: 1239-1243. Naaby-Hansen, S., C. J. Flickinger, and J. C. Herr. 1997. Two-dimensional gel electrophoretic analysis of vectorially labeled surface proteins of human spermatozoa. Biol. Reprod. 56: 771–787. Naz, K. R., and P. B. Rajesh. 2004. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod. Biol. Endocrinol. 2: 75. O’Leary, S., M. J. Jasper, G. M. Warnes, D. T. Armstrong, and S. A Robertson. 2004. Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig. Reproduction 128:237-247 Osheroff J. E., P. E. Visconti, J. P. Valenzuela, A. J. Travis, J. Alvarez, and G. S. Kopf. 1999. Regulation of human sperm capacitation by a cholesterol efflux-stimulated signal transduction pathway leading to protein kinase A-mediated up-regulation of protein tyrosine phosphorylation. Mol. Hum. Reprod. 5: 1017-1026. Rathi, R., B. Colenbrander, T. A. Stout, M. M. Bevers, and B. M. Gadella. 2003. Progesterone induces acrosome reaction in stallion spermatozoa via a protein tyrosine kinase dependent pathway. Mol. Reprod. Dev. 64: 120-128. Pandey, A., A. V. Podtelejnikov, B. Blagoev, X. R. Bustelo, M. Mann, and H. F. Lodish. 2000. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. U. S. A. 97:179-184. Pawson, T. and J. D. Scott. 2005. Protein phosphosphorylation in signaling-50 years and counting. Trends Biochem. Sci. 30: 286-290. Pommer, A. C., J. Rutllant, and S. A. Meyers. 2003. Phosphorylation of protein tyrosine residues in fresh and cryopreserved stallion spermatozoa under capacitating conditions. Biol. Reprod. 68: 1208-1214 Rhode, M., J. H. Brendemuhl, and P. J. Hansen. Litter characteristics of gilts artificially inseminated with transforming growth factor-β. Am. J. Reprod. Immunol. 56:153-156. Roberts, T. K., and J. C. Boursnell. 1975. The isolation and characterization of lactoferrin from sow milk and boar seminal plasma. J. Reprod. Fertil. 42: 579-582 Rodríguez-Martínez H., F. Saravia, M. Wallgren, P. Tienthai, A. Johannisson, J. M. Vázquez, E. Martínez, J. Roca, L. Sanz, and J. J. Calvete. 2005. Boar spermatozoa in the oviduct. Theriogenology 63: 514-35. Pilch, B. & M. Mann. 2006. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 7: R40. Pukazhenthi, B. S., D. E. Wildt, M. A. Ottinger, and J. Howard. 1998. Inhibition of domestic cat spermatozoa acrosome reaction and zona pellucida penetration by tyrosine kinase inhibitors. Mol. Reprod. Dev. 49:48-57. Rehm, H. 2006. Protein biochemistry and proteomic. Oxford : Academic. Romero M. F., and W. F. Boron. 1999. Electrogenic Na/HCO3 cotransporters: Expression cloning and physiology. Annu. Rev. Physiol. 61:699-723 Saling PM, Storey BT. 1979. Mouse gamete interactions during fertilization in vitro. Chlortetracycline as a fluorescent probe for the mouse sperm acrosome reaction. J. Cell Biol. 83:544-555. Sanz, L., J. J. Calvete, K. Mann, W. Schafer, S E. R. chmid, and E. Tepfer-Petersen. 1992a. The complete primary structure of the boar spermadhesin AQN-1, a carbohydratebindmg protein involved in fertilization. Eur. J. Biochem. 205: 645-652. Shetty, J., A. B. Diekman, F. C. Jayes, N. E. Sherman, S. Naaby-Hansen, C. J. Flickinger, and J. C. Herr. 2001. Differential extraction and enrichment of human sperm surface proteins in a proteome: identification of immunocontraceptive candidates. Electrophoresis 22: 3053–3066. Smith, R. D. 2000. Evolution of ESI-mass spectrometry and fourier transform ion cyclotron resonance for proteomics and other biological applications. Int. J. Mass. Spectrom. 200: 509-544 . Sickmann A and H. E. Meyer. 2001. Phosphoamino acid analysis. Proteomics 1: 200-206. Si, Y., and M. Okuno. 1999. Role of tyrosine phosphorylation of flagellar proteins in hamster sperm hyperactivation. Biol. Reprod. 61: 240-246. Strzeżek, J., P. Wysocki, W. Kordan, M. Kuklińska, M. Mogielnicka, D. Soliwoda, and L. Fraser. 2005. Proteomics of boar seminal plasma – current studies and possibility of their application in biotechnology of animal reproduction. Reprod. Biol. 5: 279-290. Sun Q. Y. and T. Nagai. 2003. Molecular mechanisms underlying pig oocyte maturation and fertilization. J. Reprod. Dev. 49:347-359. Suarez, S. S. 1998. The oviductal sperm reservoir in mammals: mechanisms of formation. Biol. Reprod. 58:1105-1107. Tardif S., C. Dubé, S. Chevalier, and J. L. Bailey. 2001. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol. Reprod. 65 : 784-792 Visconti P. E., J. L. Bailey, G. D. Moore, D. Pan, P. Olds-Clarke, and G. S. Kopf. 1995a. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121: 1129-1137. Visconti P. E., G. D. Moore, J. L. Bailey, P. Leclerc, S. A. Connors, D. Pan, P. Olds-Clarke, and G. S. Kopf. 1995b. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121: 1139-1150. Visconti P. E., J. Stewart-Savage, A. Blasco, L. Battaglia, P. Miranda, G. S. Kopf, and J. G. Tezón. 1999. Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol. Reprod. 61: 76-84. Watermann, S., and K. Weber, 2004. Post-translational modifications regulate microtubule function. Nat. Rev. Mol. Cell Biol. 4: 938-947. Wasinger V. C., S. J. Cordwell, A. Cerpa-Poljak, J. X. Yan, A. A. Gooley, M. R. Wilkins, M. W. Duncan, R. Harris, K. L. Williams, and I. Humphery-Smith.1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16: 1090-1094. Wasco W. M., and Orr G. A. 1984. Function of calmodulin in mammalian sperm: presence of a calmodulin-dependent cyclic nucleotide phosphodiesterase associated with demembranated rat caudal epididymal sperm. Biochem. Biophys. Res. Commun. 118: 636-642. Wasinger, V., S. Cordwell, A. Cerpa-Poljak, J. Yan, A. Gooley Yan, J. X., N. H. Packer, A. A. Gooley and K. L. Williams. 1998. Protein phosphorylation: technologies for the identification of phosphoamino acids. J. Chromatoger. A. 808: 23-41. Zhang, L., C. L. Ashendel, G. W. Becker, and D. J. Morré. Isolation and characterization of the principal ATPase associated with transitional endoplasmic reticulum of rat liver. 1994. J. Cell Biol. 127: 1871-1883. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40723 | - |
dc.description.abstract | 本研究旨在利用最新穎精確的蛋白質體學研究方法,來研究公豬精子獲能相關之蛋白質圖譜。為達此目的,吾人將公豬精液分為精子與精漿兩部分來分析探討。獲能前之精子表面結合有精漿蛋白質,這些蛋白質能抑制精子之獲能,稱去獲能因子。因此精子須先脫去其表面之精漿物質,方能發生獲能作用而達到受精之目的;該過程為一系列反應,包括精子中酪胺酸(Tyrosine,Tyr)的磷酸化。由於精子獲能時絲胺酸/酥胺酸(Serinr/ Threonine,Ser/Thr)磷酸化對獲能之影響所知甚少,因此本研究冀望利用蛋白質體學之方法,分別探討精子獲能時蛋白質中之Ser/Thr磷酸化的變化與精漿中去獲能因子的多樣性,探討公豬精子獲能相關之蛋白質圖譜。
首先,在精子蛋白質磷酸化之部分,為比較獲能精子與未獲能精子之Ser/Thr磷酸化蛋白質圖譜。首先利用chlortetracycline(CTC)染色、peanut agglutinin (PNA)染色與西方點墨法來確認精子的獲能狀態。在CTC染色與PNA染色結果,均顯示精子之獲能處理與未獲能處理有極顯著的差異(p < 0.01),同樣在西方點墨法也證實了精子獲能處理組之精子確實有獲能。接著利用串聯式質譜分析儀(LC-MS/MS)來偵測獲能精子與未獲能精子中的蛋白質體,並純化出個別的Ser/Thr磷酸化胜肽,同時由LC-MS/MS比對其Ser/Thr磷酸化蛋白質圖譜。結果顯示精子在獲能前後,在獲能精子中共有18個Ser/Thr位置發生磷酸化,而未獲能之精子則有33個Ser/Thr磷酸化位置。其中6個磷酸化蛋白質在獲能精子與未獲能精子中,具有不同的Ser/Thr磷酸化位置;4個蛋白質僅在獲能精子中發生Ser/Thr磷酸化;9個蛋白質僅在未獲能精子中發生Ser/Thr磷酸化。 其次,為分析公豬精漿之蛋白質體,利用一維電泳膠分離公豬精漿蛋白質後,配合LTQ-FT ICR MS質譜儀,共分析到107個蛋白質出現在公豬精漿中。利用人類及小鼠之資料庫,經基因功能體系分類後,以level 4做基準,將蛋白質之分子功能粗略分為蛋白質磷酸化、離子結合與運送、電子傳遞鍊、催化反應、核酸結合、酵素抑制劑、蛋白質結合功能以及其他,共八大類分子功能。依據文獻推測,蛋白質磷酸化、離子結合與運送、酵素抑制劑以及其他豬特異表現之蛋白質中,最有可能出現與精子獲能相關之因子。再則比較公豬精漿、獲能精子、未獲能精子此三個蛋白質體間之差異,分析獲得於公豬精漿中之major seminal plasma glycoprotein PSP-I、glutathione S-transferase P、malate dehydrogenase, cytoplasmic、aldose reductase、junction plakoglobin以及neutral α-glucosidase AB等,共六種蛋白質在精漿中為極具潛力之去獲能因子。 | zh_TW |
dc.description.abstract | Sperm capacitation refers to the process of ejaculated sperm developing the ability to fertilize eggs in female reproductive tracts. Capacitation can be inhibited by decapacitation factors existed in the seminal plasma. However, the molecular mechanisms regarding the capacitation and decapacitation process are still needs to be resolved. Thus the purpose of this study was to understand the capacitation-related proteins in boar semen by proteomic study. The advancement of high sensitivity mass spectrometry and bioinformatics software bring us the better chances analyzing the proteomic composition of boar semen. In order to evaluate the sperm capacitation profile, porcine sperm and seminal plasma were analyzed separately. First, porcine sperm was assorted into capacitated and uncapacitated sperm to reveal the phosphoproteome involved in sperm capacitation. Second, the proteome of the seminal plasma was analyzed to unveil the decapacitation factors existed in the seminal plasma.
Protein extracts of the capacitated and uncapacitated sperm were resolved in the SDS-PAGE, digested in gel by trypsin, and isolated the Serine/Threonine (Ser/Thr) containing phosphopeptides. The phosphoproteome was analyzed by liquid chromatography combined with linear ion trap–fourier transform ion cyclotron resonance mass spectrometry (LC LTQ-FT ICR MS). The preliminary data of Ser/Thr phosphoproteome showed that 9 proteins were phosphorylated only in uncapacitated sperm such as tubulin α and β subunit, which is the constituent of microtubles and may related to sperm hypermotility. There are 4 proteins were phosphorylated only in capacitated sperm. Moreover, distinct phosphorylation sites were found in 6 proteins when compared the phosphoproteome between capacitated and uncapacitated sperm. It includes cAMP-dependent protein kinase and outer dense fiber protein. The cAMP-depent protein kinase type I and type II can regulate signal transduction chains mediating membrane association. In addition, outer dense fiber protein located on outside of the axoneme in the sperm tail may help maintain the passive elastic structure of sperm tail. Hence, it is reasonable to assume that the process of sperm capacitation is regulated by altering phosphorylation status of Ser/Thr residuals. The proteins extracted from seminal plasma were separated on a SDS-PAGE gel, digested in gel by trypsin, and subjected to LC LTQ-FT ICR MS analyses. There were 107 proteins identified from porcine seminal plasma. The proteome data was further analyzed using Gene Ontology program and the results were classified into 8 categories base upon molecular functions. Among them, the phosphorylation-related are phospholipid binding, transferase activity (transferring phosphorus-containing groups), phospholipase inhibitor activity and pyridoxal phosphate binding. These proteins possess the ability to bind the phospholipids, to inhibit the phospholipase activity, and to catalyze the transfer of phosphorus-containing groups, which may cause the change of protein phosphoylation sites on sperm. The category of ion binding and transporting will involve metal ion binding, anion binding, anion transmembrane transporter activity, and calcium-dependent protein binding which could regulate ion efflux and influx especially the calcium that holds an important role in sperm capacitation. Enzyme inhibitors equipped activity of protease and phospholipase inhibitor may reduce or terminate the activity of phospholipase involved in sperm capacitation. Finally, using the proteome of seminal plasma as backbone and subtracting the proteins presented in the capacitated sperm which left 6 proteins only present in uncapacitated sperm and seminal plasma. It could be the potential candidates of sperm decapacitation factors existed in seminal plasma. In conclusion, it is the first time that the phosphoproteome of capacitated and uncapacitated sperm was compared, and the proteome of porcine seminal plasma was unveiled. These results will be helpful for our further understanding the complex mechanism of mammalian sperm capacitation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:57:30Z (GMT). No. of bitstreams: 1 ntu-97-R95626013-1.pdf: 1338641 bytes, checksum: e8a327e380014eb7368077504e65c273 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄…….……………………………………………………………………..….……..I
表次…….……………………………………………..……….…………………….. IV 圖次…….……………………………………………...……………………………….V 中文摘要……………………………………………………………………………..VII 英文摘要……………………………………………………………………………...IX 第一章 前言………………………………………………….………...……………..1 第二章 文獻檢討……………………………………………………….…….………2 2.1 蛋白質體學簡介……………………………………………….…………….2 2.1.1蛋白質體學之研究進展……………………………….………………2 2.1.2質譜儀分析與應用………………………….………………….…..….2 2.1.3磷酸化蛋白質體學之進展………………………………………….…5 2.1.4基因功能性分類(gene ontology, GO)……………………….………5 2.1.5利用蛋白質體學於精漿及精子的研究……………………….………6 2.2 精子……………………………………………….…………….……………6 2.2.1 豬精子構造………………………………………………...………….6 2.2.2 精子生理………………………………………………..….………….7 2.2.3 精子獲能時之分子機制…………………………..…...…………….15 2.3 精漿……………………………………………….…………….…..………19 2.3.1 豬精漿的來源及其組成份………………………………..…………19 2.3.2 精漿於生殖上之生理功能………………………….……….………19 2.3.3 精漿對精子的去獲能反應的影響……………………………..……20 頁次 第三章 試驗研究………………………………….………………………...………22 試驗一:公豬精子獲能前後磷酸化蛋白質圖譜之比較………………………22 (一)前言………………………………………….………………………...…22 (二)材料與方法…………………………………………………………...….23 2.1 精子的來源與前處理……………………………………..…..………23 2.2 精子獲能反應…………………………………………………...…….23 2.3 CTC染色………………………………………………………..…….24 2.4 PNA 染色………………………………………………………..……24 2.5 絲胺酸與酥胺酸(Ser/Thr)磷酸化之精子總蛋白質萃取……….…24 2.6 西方點墨法………………………………………….……..………….25 2.7 蛋白質膠體內水解…………………………………………..….…….25 2.8 磷酸化蛋白質豐富化(phosphoprotein enrichment)………………26 2.9 質譜儀分析………………………………………….………..……….27 2.10 統計方法………………………………………….………..…………..27 (三)結果與討論…………………………………………….…………………28 3.1 精子體外獲能分析……………………………………..…….….……28 3.2 精子獲能前後Ser/Thr磷酸化蛋白質圖譜之比較………..…....……36 (四)結論………………………………………………….………………...…55 試驗二:公豬精漿中與精子獲能相關之蛋白質圖譜………………….………56 (一)前言………………………………………………………………………56 (二)材料與方法………………………………………………………………57 2.1 採精與精漿分離…………………………………………..….….……57 2.2 SDS-PAGE膠體電泳…………………….……………….……..……57 頁次 2.3 蛋白質膠體內水解…………………………………………..…..……57 2.4 質譜儀分析…………………………………………………...…….…57 2.5 基因之功能性分類...…………………………….………….….…..…57 (三)結果與討論………………………………………………………………59 3.1 質譜儀鑑定…………………………..…………………………..……59 3.2 基因功能分類體系分析…………………………………….…..…….60 3.3 精漿中具有潛力之去獲能因子………..……………………..………62 (四)結論…………………………………...………….………………………73 第四章 總結…………………………………………………………………………74 參考文獻………………………………………………………………………………75 小傳……………………………………………………………………………………89 | |
dc.language.iso | zh-TW | |
dc.title | 公豬精子獲能相關之絲胺酸/酥胺酸磷酸化之蛋白質圖譜 | zh_TW |
dc.title | Protein Profile of Seminal Plasma and Serine/Threonine Phosphoproteome Related to Capacitation of Boar Spermatozoa | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭登貴,李勝祥,林恩仲,黃木秋 | |
dc.subject.keyword | 精子,精漿,蛋白質體學, | zh_TW |
dc.subject.keyword | boar sperm,seminal plasma,proteomics, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。