請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40720
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳義裕 | |
dc.contributor.author | Po-Sen Yang | en |
dc.contributor.author | 楊博森 | zh_TW |
dc.date.accessioned | 2021-06-14T16:57:22Z | - |
dc.date.available | 2011-08-18 | |
dc.date.copyright | 2011-08-18 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-12 | |
dc.identifier.citation | [1]P. Markowich, G. Toscani, Applied Partial Di erential Equations, Springer
Berlin Heidelberg, Ch.3, (2007). [2]E. M. Purcell, Am. J. Phys. 45, pp. 3 (1977). [3]L. E. Becker, S. A. Koehler, and H. A. Stone, J. Fluid Mech. 490, pp. 15 (2003). [4]J. E. Avron, O. Kenneth, and D. H. Oaknin, New J. Phys. 7, pp. 234 (2005). [5]T. Shimada, D. Kadau, T. Shinbrot, and H. J. Herrmann, Phys. Rev. E. 80, 020301 (2009). [6]M. Marn, P. Cordero, Comput. Phys. Commun. 92, pp. 214-224 (1995). [7]D.W. Jones, Commun. ACM 29, pp. 300-311 (1986). [8]D.E. KnuthThe Art of Computer Programming Sorting and Searching, Addison-Wesley, Vol. 3, (1973). [9]M.R. Brown, SIAM J. Comput. 7, pp. 298-319 (1978). [10]J. Francon, G. Viennot, J. Vuillemin, Proceeding of the 19th Annual Symposium on Foundations of Computer Science. IEEE, pp. 1-7 (1978). [11]D.D. Sleator and R.E. Tarjan, Proceedings of the ACM SIGACT Sym- posium on theory of Computing, pp. 235-245 (1983). [12]R.E. Tarjan, D.D. Sleator, JACM 32, pp. 652-686 (1985). [13]M.L. Fredman, R. Sedgewick, D. Sleator, R. Tarjan, Algorithmica 1, pp. 111-129 (1986). [14]G. Paul, Journal of Computational Physics, 221(2), pp. 615-625 (2006). [15]S. Miller, S. Luding, Journal of Computational Physics, 193(1), pp. 306- 316 (2004). [16]B. D. Lubachevsky, J. Comput. Phys. 94, pp. 255 (1991). [17]S. Luding, Granular Matter 1, pp. 113 (1998). 36 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40720 | - |
dc.description.abstract | 顆粒流在日常生活或是在工業上都是非常常見的,顆粒流的形式有時候像液體,例如沙漏中的沙子,有時候像固體,例如工業大量製造藥品,很多藥丸都是顆粒型式。微觀的來說,顆粒都是簡單遵守牛頓運動法則的,但是巨觀看到現象卻複雜許多。
在本論文中,將建構一個簡單的模型,這個簡單的模型是用來在顆粒流當中運動的,由兩個球形組成,這兩個球形可以週期性的收縮膨脹在一個長方形的箱子裡,箱子裡裝滿了小沙粒顆粒,沙粒和運動的模型碰撞設定為完全彈性碰撞,箱子的縱軸方向邊界條件是固定的,沙粒碰到上下的邊界會以完全彈性碰撞的方式反彈,箱子的橫軸方向邊界條件是周期性的,從右邊離開的沙粒會從左邊回來,沙粒之間的碰撞為非彈性碰撞,顆粒流的一個重要特性就是沙粒之間的彼此碰撞會散失能量,而散失能量的多寡將會影響顆粒留的行為,利用事件導向的模擬,動畫將呈現模型如何和沙粒互動,模型運動的週期存在某個特定值使得整個運動最快速或是最有效率,在本論文中將討論固定恢復係數時最有效率的運動周期,以及固定運動周期時最有效率的恢復係數。 | zh_TW |
dc.description.abstract | The flow of granular materials is common in natural and industrial environment, which displays either liquid, such as sand flow in hourglass, or solid , such as pharmaceutical pills, behavior. The evolution of particles follows Newton's equations. It seems very simple to describe, however its behavior is tremendously complex.
In this study, a simple model of swimmer in granular material is constructed. The swimmer is made of two spheres that contract and extend periodically in a rectangular box filled with small particles. The spheres are elastic that impose noslip boundary conditions. The boundary condition of the box is periodic in horizontal direction, and bounded in vertical direction. A distinguishing feature of granular flows is that the interaction of particles leads to energy dissipation which plays an important role in granular flow. Using event-driven simulation, the animation shows how such swimmer interacts with surrounding particles. The frequency of the swimming motion has an optimal value for certain restitution coefficient. By adjusting the restitution coefficient, we can see how energy dissipation affects the formation of surrounding particles and swimming efficiency. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:57:22Z (GMT). No. of bitstreams: 1 ntu-100-R97245002-1.pdf: 1899776 bytes, checksum: fc7bff93c68f585bb34a69b4060c4774 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 .............................Ⅱ
中文摘要 .........................Ⅲ Abstract ….......................Ⅳ Content...........................Ⅴ List of Figures ..................Ⅶ Chapter 1. Introduction ...........1 1.1 Granular Material Flows ...........1 1.2 Purcell’s Swimmer ................3 1.3 Sand Swimmer ......................6 1.4 Event-driven Simulations ....,.....8 Chapter 2. Simulation Method .............10 2.1 Event-driven Simulation ..........10 2.1.1 Event-driven Simulation of the Particles ....11 2.1.2 Calculation of the interaction time .........13 2.2 Event-driven Simulation of the Swimmer ............16 2.2.1 Collision between Swimmer and Particles......16 2.2.2 Newton’s Method ............................18 2.3 Potential Problems and Errors .....................18 Chapter 3. Result and Discussion ..........................20 3.1 Swimming Velocity .................................21 3.1.1 Swimming Velocity for Different Swimming Periods ...............................21 3.1.2 Swimming Velocity for Different Restitution Coefficients ...............................24 3.2 Swimming Efficiency ...............................28 3.2.1 Swimming Efficiency for Different Swimming Periods ...............................28 3.2.2 Swimming Efficiency for Different Restitution Coefficients ...............................30 Chapter 4. Summary of what has been learned from this study ...............................32 Reference ................................................35 | |
dc.language.iso | en | |
dc.title | 二維顆粒流中之運動模擬分析 | zh_TW |
dc.title | Simulation of Swimming in Two-Dimensional Granular Media | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 杜其永,陳志強 | |
dc.subject.keyword | 顆粒流,低雷諾係數,模擬, | zh_TW |
dc.subject.keyword | granular material,low Reynolds number,event-driven simulation, | en |
dc.relation.page | 36 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-12 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。