請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40710
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴喜美(Hsi-Mei Lai) | |
dc.contributor.author | Yu-Fen Wang | en |
dc.contributor.author | 王玉芬 | zh_TW |
dc.date.accessioned | 2021-06-14T16:56:56Z | - |
dc.date.available | 2010-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-29 | |
dc.identifier.citation | 何煜,郭琪,杜曉敏。1999。中藥細胞級微粉碎對體內吸收的影響。中成藥,21:601-602。
李華,袁春龍,沈潔。2007。粉碎技術在葡萄籽加工中的應用。華南理工大學學報自然科學版,35:123-126。 金萬勤,黃芳,郭立瑋。2001。蒼術、黃柏及二妙丸超細微粉的生物藥劑學的研究Ⅰ.掃描電子顯微鏡技術對超細微粉的表徵。中草藥,32:306-308。 常致綱。2006。大豆異黃酮定量方法之改良及加工方式對大豆異黃酮種類轉換之研究。國立台灣大學農業化學所碩士論文。 黃建蓉,李琳,李冰。2007。超微粉碎對食品物料的影響。糧食與飼料工業,7:25-27。 趙紅梅。2007。超微複方紫蘇中草藥添加劑對斷奶仔豬生長及腸道發育影響研究超微細化在飼料上的應用。廣西大學碩士論文。 劉迎。2006。超微粉碎對中藥”促免散”粉體特性及藥理作用的影響。河北農業大學碩士學位論文。 劉彩兵。2004。米糠與麥麩的超微細化研究。四川大學碩士學位論文。 賴喜美,林佩吟。省產稻米發育及豆類發芽期間富含醣類與酚類化合物保健食品之開發--停經後婦女保健功能性食品成分之開發(III)。行政院農委會九十五年度農業科技計畫研究報告。12.31.2006. AACC 1995. Approved Method of the American Association of Cereal Chemists. AACC Inc., MN. USA. Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y. 1987. Genistein, a Specific Inhibitor of Tyrosine-Specific Protein-Kinases. J. Biol. Chem. 262: 5592-5595. Aluko, R. E., and Yada, R. Y. 1995. Structure function relationships of cowpea (Vigna unguiculata) globulin isolate influence of pH and NaCl on physicochemical and functional properties. Food Chem. 53: 259-265. Anese, M., and Nicoli, M. C. 2003. Antioxidant properties of ready-to-drink coffee brews. J. Agric. Food Chem. 51: 942-946. Anthony, M. S., Clarkson, T. B., Hughes, C. L., Morgan, T. M., and Burke, G. L. 1996. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J. Nutr. 126: 43-50. Babochkina, T., Mergenthaler, S., Lapaire, O., Kiefer, V., Yura, H., Koike, K., Holzgreve, W., and Hahn, S. 2005. Evaluation of a soybean lectin-based method for the enrichment of erythroblasts. J. Histochem. Cytochem. 53: 329-330. Barnes, S., Kirk, M., and Coward, L. 1994. Isoflavones and their conjugates in soy foods extraction conditions and analysis by hplc mass-spectrometry. J. Agric. Food Chem. 42: 2466-2474. Bavec, F., Bavec, M. 2007. Legumes, organic production and use of alternative crops. ch. 7. Boca Raton : CRC Press. Carbonaro, M., Virgili, F., and Carnovale, E. 1996. Evidence for protein-tannin interaction in legumes: Implications in the antioxidant properties of faba bean tannins. Food Sci. Technol. 29: 743-750. Chang, S. K. C. 2002. Isoflavones from soybeans and soy foods. In: Shi, J., Mazza, G. and Le Maguer, M. (Eds.) Functional foods: biochemical & processing aspects. Vol. 2. Boca Raton : CRC Press. Chau, C. F., Wang, Y. T., and Wen, Y. L. 2007. Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem. 100: 1402-1408. Chau, C. F., Wen, Y. L., and Wang, Y. T. 2006a. Effects of micronisation on the characteristics and physicochemical properties of insoluble fibres. J. Sci. Food Agric. 86: 2380-2386. Chau, C. F., Wen, Y. L., and Wang, Y. T. 2006b. Improvement of the functionality of a potential fruit insoluble fibre by micron technology. Int. J. Food Sci. Technol. 41: 1054-1060. Chau, C. F., Wu, S. C., and Lee, M. H. 2007. Physicochemical changes upon micronization process positively improve the intestinal health-enhancement ability of carrot insoluble fibre. Food Chem. 104: 1569-1574. Chau, C. F., Wu, S. H., and Yen, G. C. 2007. The development of regulations for food nanotechnology. Trends Food Sci. Technol. 18: 269-280. Choung, M. G., Baek, I. Y., Kang, S. T., Han, W. Y., Shin, D. C., Moon, H. P., and Kang, K. H. 2001. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. 49: 5848-5851. Clarke, E. J., and Wiseman, J. 2000. Developments in plant breeding for improved nutritional quality of soya beans II. Antinutritional factors. J. Agric. Sci. 134: 125-136. Coward, L., Smith, M., Kirk, M., and Barnes, S. 1998. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 68: 1486S-1491S. Crouse, J. R., Terry, J. G., Morgan, T. M., McGill, B. L., Davis, D. H., King, T., Ellis, J. E., and Burke, G. L. 1998. Soy protein containing isoflavones reduces plasma concentrations of lipids and lipoproteins. Circulation 97: 816-816. Day, A. J., Canada, F. J., Diaz, J. C., Kroon, P. A., McLauchlan, R., Faulds, C. B., Plumb, G. W., Morgan, M. R. A., and Williamson, G. 2000. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 468: 166-170. DiSilvestro, R. A., Goodman, J., Dy, E., and LaValle, G. 2005. Soy isoflavone supplementation elevates erythrocyte superoxide dismutase, but not plasma ceruloplasmin in postmenopausal breast cancer survivors. Breast Cancer Res. Treat. 89: 251-255. Eldridge, A. C., and Kwolek, W. F. 1983. Soybean Isoflavones - Effect of Environment and Variety on Composition. J. Agric. Food Chem. 31: 394-396. Faraj, A., and Vasanthan, T. 2004. Soybean isoflavones: Effects of processing and health benefits. Food Rev. Int. 20: 51-75. Feng, Y. T., Han, K., and Owen, D. R. J. 2004. Discrete element simulation of the dynamics of high energy planetary ball milling processes. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 375-77: 815-819. Forster, S., and Konrad, M. 2003. From self organizing polymers to nano- and biomaterials. J. Mater. Chem. 13: 2671-2688. Francis, G., Makkar, H. P. S., and Becker, K. 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199: 197-227. Friedman, M., Brandon, D. L., Bates, A. H., and Hymowitz, T. 1991. Comparison of a commercial soybean cultivar and an isoline lacking the Kunitz trypsin inhibitor- composition, nutritional value, and dffects of heating. J. Agric. Food Chem. 39: 327-335. Fuster, M. D., Mitchell, A. E., Ochi, H., and Shibamoto, T. 2000. Antioxidative activities of heterocyclic compounds formed in brewed coffee. J. Agric. Food Chem. 48: 5600-5603. Genovese, M. I., Lopes Barbosa, A. C., Pinto, M. D., and Lajolo, F. M. 2007. Commercial soy protein ingredients as isoflavone sources for functional foods. Plant Food Hum. Nutr. 62: 53-58. Gniechwitz, D., Brueckel, B., Reichardt, N., Blaut, M., Steinhart, H., and Bunzel, M. 2007. Coffee dietary fiber contents and structural characteristics as influenced by coffee type and technological and brewing procedures. J. Agric. Food Chem. 55: 11027-11034. Gurfinkel, D. M., and Rao, A. V. 2003. Soyasaponins: The relationship between chemical structure and colon anticarcinogenic activity. Nutr. Cancer 47: 24-33. Han, T., Kalman, H., and Levy, A. 2002. DEM simulation of particle comminution in jet milling. Part. Sci. Technol. 20: 325-340. Harland, B. F., and Morris, E. R. 1995. Phytate - a Good or a Bad Food Component. Nutr. Res. 15: 733-754. Hayakawa, I., Yamada, Y., and Fujio, Y. 1993. Microparticulation by jet mill grinding of protein powders and effects on hydrophobicity. J. Food Sci. 58: 1026-1029. Hinds, M. J., Chinnan, M. S., and Beuchat, L. R. 1997. Particle size distribution in a heat processed beverage prepared from roasted peanuts. Food Res. Int. 30: 59-64. Hou, T. H., Su, C. H., and Liu, W. L. 2007. Parameters optimization of a nano particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technol. 173: 153-162. Hsu, P. K., Chien, P. J., and Chau, C. F. 2007. An exploitation of the antimicrobial potential of a fruit insoluble fibre by micronization. Eur. Food Res. Technol. 225: 199-204. Hsu, P. K., Chien, P. J., and Chau, C. F. 2008. Micronization increases vitamin E carrying and releasing abilities of insoluble fiber. J. Agric. Food Chem. 56: 2170–2174 Hu, L. M., and Chen, M. H. 1996. Preparation of ultrafine powder: The frontiers of chemical engineering. Mater. Chem. Phys. 43: 212-219. Huang, H., Pan, J., and McCormick, P. G. 1997. On the dynamics of mechanical milling in a vibratory mill. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 232: 55-62. Kao, T. H., and Chen, B. H. 2006. Functional components in soybean cake and their effects on antioxidant activity. J. Agric. Food Chem. 54: 7544-7555. Kheifets, A. S., and Lin, I. J. 1998. Energetic approach to kinetics of batch ball milling. Int. J. Miner. Process. 54: 81-97. Kim, J. A., Jung, W. S., Chun, S. C., Yu, C. Y., Ma, K. H., Gwag, J. G., and Chung, I. M. 2006. A correlation between the level of phenolic compounds and the antioxidant capacity in cooked with rice and vegetable soybean (Glycine max L.) varieties. Eur. Food Res. Technol. 224: 259-270. Kuntz, D. A., Nelson, A. I., Steinberg, M. P., and Wei, L. S. 1978. Control of chalkiness in soymilk. J. Food Sci. 43: 1279-1283. Kuzuhara, H., Nishiyama, S., Minowa, N., Sasaki, K., and Omoto, S. 2000. Protective effects of soyasapogenol A on liver injury mediated by immune response in a concanavalin A induced hepatitis model. Eur. J. Pharmacol. 391: 175-181. Kwon, Y. S., Gerasimov, K. B., and Yoon, S. K. 2002. Ball temperatures during mechanical alloying in planetary mills. J. Alloy. Compd. 346: 276-281. Li, B., Xia, J., Wang, Y., and Xie, B. J. 2005. Grain size effect on the structure and antiobesity activity of konjac flour. J. Agric. Food Chem. 53: 7404-7407. Lolas, G. M., and Markakis, P. 1975. Phytic acid and other phosphorus compounds of beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 23: 13-15. Mahungu, S. M., Diaz-Mercado, S., Li, J., Schwenk, M., Singletary, K., and Faller, J. 1999. Stability of isoflavones during extrusion processing of corn/soy mixture. J. Agric. Food Chem. 47: 279-284. Matsuura, M., and Obata, A. 1993. Beta-glucosidases from soybeans hydrolyze daidzin and genistin. J. Food Sci. 58: 144-147. McCue, P. P., and Shetty, K. 2005. Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochem. 40: 1791-1797. Mio, H., Kano, J., and Saito, F. 2004. Scale-up method of planetary ball mill. Chem. Eng. Sci. 59: 5909-5916. Nakamura, A., Maeda, H., and Corredig, M. 2007. Influence of heating on oil-in-water emulsions prepared with soybean soluble polysaccharide. J. Agric. Food Chem. 55: 502-509. Narayana, K., and Rao, M. S. N. 1982. Functional properties of raw and heat processed winged bean (Psophocarpus tetragonolobus) flour. J. Food Sci. 47: 1534-1538. Nath, J. P., and Rao, M. S. N. 1981. Functional properties of guar proteins. J. Food Sci. 46: 1255-1259. Neto, V. Q., Narain, N., Silva, J. B., and Bora, P. S. 2001. Functional properties of raw and heat processed cashew nut (Anacardium occidentale (L.)) kernel protein isolates. Nahrung Food 45: 258-262. Nicoli, M. C., Anese, M., Parpinel, M. T., Franceschi, S., and Lerici, C. R. 1997. Loss and/or formation of antioxidants during food processing and storage. Cancer Lett. 114: 71-74. Niki, E., and Noguchi, N. 2004. Dynamics of antioxidant action of vitamin E. Accounts Chem. Res. 37: 45-51. Oatway, L., Vasanthan, T., and Helm, J. H. 2001. Phytic acid. Food Rev. Int. 17: 419-431. Oberdorster, G. 2001. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74: 1-8. Palmer, R., McIntosh, A., and Pusztai, A. 1973. Nutritional evaluation of kidney Beans (Phaseolus vulgaris) effect on nutritional value of seed germination and changes in trypsin inhibitor content. J. Sci. Food Agric. 24: 937-944. Palmquist, D. L., and Jenkins, T. C. 2003. Challenges with fats and fatty acid methods. J. Anim. Sci. 81: 3250-3254. Park, E., Shin, J. I., Park, O. J., and Kang, M. H. 2005. Soy isoflavone supplementation alleviates oxidative stress and improves systolic blood pressure in male spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 51: 254-259. Pereira, M. E. A., Kabat, E. A., and Sharon, N. 1974. Immunochemical studies on specificity of soybean agglutinin. Carbohydr. Res. 37: 89-102. Petruccelli, S., and Anon, M. C. 1994. Relationship between the method of obtention and the structural and functional properties of soy protein isolates .2. surface properties. J. Agric. Food Chem. 42: 2170-2176. Ranhotra, G. S., Gelroth, J. A., and Vetter, J. L. 1996. Determination of fat in bakery products by three different techniques. Cereal Foods World 41: 620-622. Reed, J. S. 1995. Principles of ceramics processing. New York: John wiley & Sons. 1995:313-337. Reichwald, K., and Hatzack, F. 2008. Application of a modified Haug and Lantzsch method for the rapid and accurate photometrical phytate determination in soybean, wheat, and maize meals. J. Agric. Food Chem. 56: 2888-2891. Rosenthal, A., Deliza, R., Cabral, L. M. C., Cabral, L. C., Farias, C. A. A., and Domingues, A. M. 2003. Effect of enzymatic treatment and filtration on sensory characteristics and physical stability of soymilk. Food Control 14: 187-192. Rubico, S. M., Resurreccion, A. V. A., Frank, J. F., and Beuchat, L. R. 1987. Suspension stability, texture, and color of high temperature treated peanut beverage. J. Food Sci. 52: 1676-1679. Saio, K., and Arai, K. 1973. Fine structure of soybean seed coat and tts changes on cooking. Cereal Sci.Today 18: 197-&. Sanguansri, P., and Augustin, M. A. 2006. Nanoscale materials development - a food industry perspective. Trends Food Sci. Technol. 17: 547-556. Sato, K., Ikeda, T., and Minagawa, S. 1983. Changes of fine structure of soybean cotyledons during seed ripening, germination and emergence. Japan. J. Crop Sci. 52: 65-72. Schwenke, K. D. 2001. Reflections about the functional potential of legume proteins - A review. Nahrung Food 45: 377-381. Setchell, K. D. R. 1998. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 68: 1333S-1346S. Setchell, K. D. R., and Cassidy, A. 1999. Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. 129: 758S-767S. Setchell, K. D. R., Brown, N. M., Zimmer-Nechemias, L., Brashear, W. T., Wolfe, B. E., Kirschner, A. S., and Heubi, J. E. 2002. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 76: 447-453. Sharma, A., and Sehgal, S. 1992. Effect of processing and cooking on the antinutritional factors of faba bean (Vicia faba). Food Chem. 43: 383-385. Shibata, S., Ishihara, C., and Matsumoto, K. 2004. Improved separation method for highly purified lutein from Chlorella powder using jet mill and flash column chromatography on silica gel. J. Agric. Food Chem. 52: 6283-6286. Shibata, T. 2002. Method for producing green tea in microfine powder. United States Patent US6416803B1. Shimelis, E. A., and Rakshit, S. K. 2007. Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chem. 103: 161-172. Siddhuraju, P., and Becker, K. 2001. Effect of various domestic processing methods on antinutrients and in vitro protein and starch digestibility of two indigenous varieties of Indian tribal pulse, Mucuna pruriens Var. utilis. J. Agric. Food Chem. 49: 3058-3067. Singh, P., Kumar, R., Sabapathy, S. N., and Bawa, A. S. 2008. Functional and edible uses of soy protein products. Compr. Rev. Food. Sci. Food Saf. 7: 14-28. Slavin, J. L. 1996. Phytoestrogens in breast milk - Another advantage of breast-feeding? Clin. Chem. 42: 841-842. Strazisar, J., and Runovc, F. 1996. Kinetics of comminution in micro- and sub-micrometer ranges. Int. J. Miner. Process. 44-5: 673-682. Townsend, A. A., and Nakai, S. 1983. Relationships between hydrophobicity and foaming characteristics of food proteins. J. Food Sci. 48: 588-594. Valdebouze, P., Bergeron, E., Gaborit, T., and Delortlaval, J. 1980. Content and distribution of trypsin-inhibitors and hemagglutinins in some legume seeds. Can. J. Plant Sci. 60: 695-701. Vijayakumari, K., Pugalenthi, M., and Vadivel, V. 2007. Effect of soaking and hydrothermal processing methods on the levels of antinutrients and in vitro protein digestibility of Bauhinia purpurea L. seeds. Food Chem. 103: 968-975. Wagner, J. R., and Gueguen, J. 1999. Surface functional properties of native, acid treated, and reduced soy glycinin. 1. Foaming properties. J. Agric. Food Chem. 47: 2173-2180. Wang, H. J., and Murphy, P. A. 1994a. Isoflavone composition of American and Japanese soybeans in Iowa - effects of variety, crop year, and location. J. Agric. Food Chem. 42: 1674-1677. Wang, H. J., and Murphy, P. A. 1994b. Isoflavone Content in Commercial Soybean Foods. J. Agric. Food Chem. 42: 1666-1673 Wang, H. J., and Murphy, P. A. 1996. Mass balance study of isoflavones during soybean processing. J. Agric. Food Chem. 44: 2377-2383. Weiss, J., Takhistov, P., and McClements, J. 2006. Functional materials in food nanotechnology. J. Food Sci. 71: R107-R116. Xu, X., Harris, K. S., Wang, H. J., Murphy, P. A., and Hendrich, S. 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 125: 2307-2315. Yanagimoto, K., Lee, K. G., Ochi, H., and Shibamoto, T. 2002. Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by maillard reaction. J. Agric. Food Chem. 50: 5480-5484. Yanagimoto, K., Ochi, H., Lee, K. G., and Shibamoto, T. 2004. Antioxidative activities of fractions obtained from brewed coffee. J. Agric. Food Chem. 52: 592-596. Yarnaya, A., Endo, Y., Fujimoto, K., and Kitamura, K. 2007. Effects of genetic variability and planting location on the phytosterol content and composition in soybean seeds. Food Chem. 102: 1071-1075. Yin, S. W., Tang, C. H., Cao, J. S., Hu, E. K., Wen, Q. B., and Yang, X. Q. 2008. Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate. Food Chem. 106: 1004-1013. Young, C. T., Schadel, W. E., and Heertje, I. 1993. A Comparison of the effects of oven roasting and oil Cooking on the microstructure of peanut (Arachis hypogaea L.cv. Florigiant) Cotyledon. Food Struct. 12: 59-66. Yu, C. C., Lee, C. L., and Pan, T. M. 2006. A novel formulation approach for preparation of nanoparticulate red mold rice. J. Agric. Food Chem. 54: 6845-6851. Yu, J. M., Ahmedna, M., and Goktepe, I. 2007. Peanut protein concentrate: Production and functional properties as affected by processing. Food Chem. 103: 121-129. Yura, H., Kanatani, Y., Ishihara, M., Takase, B., Nambu, M., Kishimoto, S., Kitagawa, M., Tatsuzawa, O., Hoshi, Y., Suzuki, S., Kawakami, M., and Matsui, T. 2008. Selection of hematopoietic stem cells with a combination of galactose-bound vinyl polymer and soybean agglutinin, a galactose-specific lectin. Transfusion 48: 561-566. Zugner, S., Marquardt, K., and Zimmermann, I. 2006. Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills. Eur. J. Pharm. Biopharm. 62: 194-201. http://www.asaim-europe.org/SoyInfo/composition_e.htm http://www.comex-group.com/prod04.htm | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40710 | - |
dc.description.abstract | 本試驗使用國產黃豆(高雄一號)及黑豆(台南六號)為原料,經發芽、濕熱及乾熱三種預處理後,以行星式球磨機製備超微細化全大豆樣品,並評估超微細化研磨對於大豆機能性成分、抗營養因子及起泡性質等之影響。大豆(含5%固形物) 經1 hr研磨後,其d90和平均粒徑顯著下降,繼續研磨時,全大豆樣品之粒徑雖持續降低但其趨勢漸緩。ㄧ般成分分析結果顯示,超微細化全大豆樣品以Soxhlet和Soxtec抽提器萃取出之粗脂肪含量顯著偏低,但其以酵素-重量法測定之水不可溶性膳食纖維含量則顯著偏高。超微細化研磨全大豆樣品經由酸水解後,再以以彌及石油醚萃取出之粗脂肪含量則與原大豆樣品之測定值接近。推測超微細化研磨會改變樣品中油脂存在的形式,大豆中之油脂可能與蛋白質及纖維等形成結合態油脂,致使其油脂萃取不完全。當提高研磨時之大豆含量為15%,研磨10 hr後,達研磨極限,全大豆樣品之d90為22.86 μm,平均粒徑為10.76 μm。經超微細研磨10 hr之黃豆、黑豆及其分別經發芽、濕熱及乾熱三種預處理之全大豆樣品,以乾熱處理者具有較高的研磨效率,其平均粒徑約為3 μm。超微細化研磨之黑豆與經發芽預處理者,其DPPH自由基清除能力較未經研磨者為高,而經相同處理之超微細化研磨黃豆樣品則較未經研磨者為低;顯示超微細化研磨有助於生黑豆及發芽黑豆表皮中機能性成分之釋放。發芽、濕熱及乾熱處理均可顯著提升黃豆及黑豆中去醣基異黃酮及總異黃酮之含量。除乾熱處理之黃豆及黑豆外,超微細化研磨可顯著提高超微細化全大豆樣品中去醣基異黃酮之含量,但超微細化研磨亦會造成部分全大豆樣品之總異黃酮含量的下降。乾熱處理會顯著降低黃豆及黑豆中植酸之含量,而超微細化處理則會使經乾熱處理之黃豆與黑豆之植酸含量提高。加熱處理亦會使黑豆及黃豆中大豆凝集素完全變性,而超微細化研磨對於大豆中凝集素活性之影響則不顯著。發芽、濕熱及乾熱三種預處理均會造成黃豆及黑豆樣品之起泡性質下降,其中下降的程度以乾熱處理者為最大,發芽處理者最輕微。超微細化研磨對生豆及發芽處理大豆之起泡性有降低的趨勢,但卻可提高濕熱及乾熱處理之超微細化全大豆樣品之起泡性。整體而言,大豆經發芽、濕熱、乾熱之預處理及超微細化研磨處理有助於提升其機能性及生物利用率,具有作為高機能性全大豆產品的開發潛力。 | zh_TW |
dc.description.abstract | The effects of ultrafine-milling on the contents and conversions of bioactive compounds in selected domestic soybean varieties (soybean KS1 and black soybean TN6) without and with pretreatments (germination and thermal treatments) were studied. The matured seeds, germinated, moist-heated and dry-heated soybeans were further milled to produce ultrafine-milled whole soybean pastes by using a planetary ball mill. The particle size was distinct reduced during the first hour of milling, and then the size reduction was slow down. The crude fat contents of ultrafine-milled whole soybeans decreased while the contents of insoluble dietary fiber increased significantly. The fat contents were increased in ultrafine-milled whole soybeans and insoluble dietary fiber were increased when test samples were acid-hydrolyzed before solvent extraction. These results indicated that the oil in soybeans was complexed with other ingredients (such as proteins and carbohydrates) during milling that resulted in the difficulty in the solvent extraction of crude fat determinations. After 10 hours of milling, the mean particle sizes of 10.76 µm and d90 of 22.86 µm could be obtained from 15% (w/w) soybeans. In comparison of milling efficiency, the dry-heated soybeans had the best milling efficiency with the mean particle sizes of 3 µm. DPPH scavenging capacity of ultrafine-milled soybeans (KS1) decreased but increased in ultrafine-milled black soybean (TN6). Germinating and thermal treatments slightly increased the total isoflavone contents but significantly increased the aglycones of isoflavone. The alycones of isoflavone were significantly increased in the ultrafine-milled soybeans, while the total isoflavone contents were decreased after ultrafine milling. The phytate contents were significantly decreased in dry-heated samples. Ultrafine-milling process did not affect the phytate contents in raw, germinated and moist-heated soybeans, but did increase the phytate contents in ultrfine-milled soybeans with dry-thermal pretreatment. The lectin activity was undetactable in thermal treated soybeans. Foam capacity was significantly affected by the germination and thermal treatments. The ultrafine-milling process decreased the foam capacity of raw and germinated soybeans while increased the foam capacity of thermal treated soybeans. The germination, thermal treatment and ultrafine-milling process may improve the bioavailability of bioactive compounds in soybeans so that the ultrafine-milled whole soybean pastes have great potentials for developing on the functional foods made with whole soybeans. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:56:56Z (GMT). No. of bitstreams: 1 ntu-97-R95623026-1.pdf: 1643040 bytes, checksum: a189024595bf70d06225f482ae29b05f (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II 目 錄 IV 表目錄 VII 圖目錄 VIII 第一章、前言 1 第二章、文獻整理 3 一、食品超微細化/奈米化 3 (一)超微細化/奈米化技術簡介 3 (二)超微細化/奈米化之技術發展 5 1. 球磨 6 (1) 球磨原理 6 (2) 行星式球磨 6 (3) 震動式球磨 9 2. 其他應用於超微細化研磨之機械加工法 9 (1) 介質研磨 9 (2) 氣流粉碎機研磨 11 (三)超微細化研磨在食品領域的應用 13 (四)超微細化/奈米化於食品領域的未來發展 14 二、大豆的簡介 15 (一)大豆異黃酮 15 1. 簡介 15 2. 吸收代謝 16 3. 機能性功效 16 4. 加工對於大豆異黃酮之影響 17 (二)抗營養因子 19 1. 簡介 19 2. 加工對於抗營養因子之影響 21 (三)大豆之其他機能性成分 21 (四)大豆蛋白質之功能性質 23 第三章、材料與方法 24 一、材料與試劑 24 (一)省產大豆原料 24 (二)分析試劑 24 二、樣品製備 25 (一)發芽處理 25 (二)濕熱處理 25 (三)乾熱處理 25 (四)粗磨 25 (五)超微細化研磨 26 三、測定方法 27 (一)一般成分分析 27 1. 水分含量測定 27 2. 灰分含量測定 27 3. 粗蛋白含量測定 27 (二)粗脂肪含量測定 28 (三)膳食纖維含量測定 29 (四)樣品粒徑分析 30 (五)DPPH自由基清除能力 30 (六)大豆異黃酮含量測定 31 (七)植酸含量測定 32 (八)大豆凝集素活性測定 33 (九)起泡性及泡沫穩定性 34 四、統計分析 35 第四章、結果與討論 36 一、超微細化研磨條件預實驗 36 (一)粒徑分布及顆粒形態 36 (二)一般成分分析 38 (三)研磨條件建立 40 (四)結語 45 二、超微細化研磨對大豆性質之影響 46 (一)粒徑分布 46 (二)粗脂肪含量 48 (三)膳食纖維含量 50 (四)DPPH自由基清除能力 52 (五)大豆異黃酮組成及含量 54 (六)植酸含量 59 (七)大豆凝集素活性 60 (八)起泡性及泡沫穩定性 62 (九)結語 64 第五章、結論 66 第六章、參考文獻 68 表目錄 表一、不同機械式研磨機之比較 12 表二、HPLC-PDA的梯度流洗條件 32 表三、黃豆全豆粉懸浮液(5%)經超微細化研磨1及4 hr後之體積粒徑分布 37 表四、超微細化全黃豆粉之一般成分分析 38 表五、以不同方法測定超微細化全黃豆粉之粗脂肪含量 (研磨時之固形物含量 為10%) 40 表六、黃豆(KS1)以不同固形物含量(5、15及25%)經超微細化研磨5、10及 15 hr後之體積粒徑 44 表七、超微細化研磨對生豆、發芽、濕熱及乾熱處理之黃豆(KS1)及黑豆(TN6) 的粒徑分布影響 47 表八、經預處理及超微細化之黃豆(KS1)及黑豆(TN6)中粗脂肪含量(Soxtec萃取 法) 49 表九、預處理及超微細化研磨對黃豆及黑豆膳食纖維含量之影響 51 表十、預處理及超微細化研磨對黃豆(KS1)及黑豆(TN6)中異黃酮組成及含量 之影響 55 表十一、預處理及超微細化研磨對黃豆(KS1)及黑豆(TN6)中四類不同結構 異黃酮之總量的影響 56 表十二、預處理及超微細化研磨對黃豆(KS1)及黑豆(TN6)中植酸含量之影響 60 表十三、預處理及超微細化研磨對黃豆(KS1)及黑豆(TN6)之大豆凝集素活性 之影響 61 圖目錄 圖一、本論文之實驗架構 2 圖二、奈米化應用於食品領域的示意圖 4 圖三、行星式球磨機示意圖 8 圖四、行星式球磨機運轉中磨球移動方式 8 圖五、震動式球磨機示意圖 9 圖六、介質研磨機結構示意圖 10 圖七、氣流粉碎機之結構示意圖及研磨過程壓縮空氣與物料之行進方式 11 圖八、大豆異黃酮之化學結構 16 圖九、大豆異黃酮在加工過程中各形態間轉換之概括圖 19 圖十、黑豆種皮之花青素結構 22 圖十一、血液凝集性質之紅血球凝集現象 34 圖十二、超微細化全黃豆粉懸浮液(5%)之光學顯微照相圖 36 圖十三、超微細化全黃豆豆粉懸浮液(5%)之體積粒徑分布 37 圖十四、研磨時間對超微細化全黃豆粉懸浮液(5%)之d90 (a)及平均粒徑(b) 之影響 41 圖十五、不同研磨濃度(5、15及25%)之大豆(KS1)經超微細化研磨10 hr 後之外觀 42 圖十六、研磨時間對不同研磨濃度(5%(a)、15%(b)及25%(c)) 之超微細化 全黃豆粉懸浮液之體積粒徑分布之影響 43 圖十七、黃豆(KS1)及黑豆(TN6)經超微細化研磨10 hr後之外觀 46 圖十八、預處理及超微細化研磨對黃豆(KS1) (a)及黑豆(TN6) (b)之DPPH 自由基清除能力之影響 53 圖十九、研磨時間對超微細化黃豆(KS1) (a)及黑豆(TN6) (b)中去醣基異黃 酮含量之影響 57 圖二十、研磨時間對超微細化黃豆(KS1) (a)及黑豆(TN6) (b)中總異黃酮含量 之影響 57 圖二十一、預處理及超微細化研磨對黃豆(KS1)(a)與黑豆(TN6)(b)起泡性之影響 63 圖二十二、預處理及超微細化研磨對黃豆(KS1) (a)與黑豆(TN6) (b)泡沫穩定 性之影響 63 | |
dc.language.iso | zh-TW | |
dc.title | 超微細化研磨對國產大豆原料之機能性成分的影響 | zh_TW |
dc.title | Bioactive Compounds of Domestic Grown Soybeans Affected by Ultrafine Milling | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李敏雄(Min-Hsiung Lee),林子清(Tzu-Ching Lin) | |
dc.subject.keyword | 大豆,超微細研磨,異黃酮,膳食纖維,DPPH自由基清除能力, | zh_TW |
dc.subject.keyword | soybean,ultrafine milling,isoflavone,dietary fiber,DPPH scavenging capacity, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。