請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40688
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉德銘(Der-Ming Yeh) | |
dc.contributor.author | Yi-Ting Chung | en |
dc.contributor.author | 鍾伊婷 | zh_TW |
dc.date.accessioned | 2021-06-14T16:56:03Z | - |
dc.date.available | 2009-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-29 | |
dc.identifier.citation | 王進學. 2005. 以膜熱穩定性技術評估菊花開花之熱延遲. 臺灣大學園藝學研究所碩士論文. 90 pp.
吳容儀. 1997. 光週、溫度與肥料對麗格秋海棠生長與開花之影響. 臺灣大學園藝學研究所碩士論文. 100 pp. 李哖. 1998. 秋海棠.財團法人七星農業發展基金會. 台北. 林嘉洋. 2006. 耐熱矮牽牛之耐熱性與耐熱指標. 臺灣大學園藝學研究所碩士論文. 116 pp. 林壽如. 2002. 臺灣花壇植物之種類與產業現況. 花卉產業現況與未來展望方向研討會. 桃園區農業改良場. 高荷惠 2007. 光週、溫度及化學疏除藥劑對麗格秋海棠盆花生產之影響. 國立臺灣大學園藝學系研究所碩士論文. 83 pp. 陳永寬 1988. 臺灣秋海棠屬植物之系統分類學研究. 中國文化大學實業計畫研究所農學組碩士論文. 176 pp. 黃雅玲. 2001. 原生秋海棠品種蒐集及栽培技術建立. 高雄區農業改良場90年度年報. Adams, S.R., S. Pearson, and P. Hadley. 1998. The effect of temperature on inflorescence initiation and subsequent development in chrysanthemum cv. Snowdon (Chrysanthemum ×morifolium Ramat.). Scientia Hort. 77: 59-72. Ashraf, M., M.M. Saeed, and M.J. Qureshi. 1994. Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ. Expt. Bot. 34:275-283. Alexandrov, V.Y. 1964. Cytophysiological and cytoecological investigations of heat resistance of plant cells toward the action of high and low temperature. Quart. Rev. Biol. 39:35-77. Allard, G., C.J. Nelson, and S.G. Pallardy. 1991. Shade effects on growth of tall fescue: Ⅰ. Leaf anatomy and dry matter partitioning. Crop Sci. 31:163-167. Anderson, J.A. and S.R. Padhye. 2004. Protein aggregation, radical scavenging capacity, and stability of hydrogen peroxide defense systemsin heat stressed vinca and sweet pea leaves. J. Amer. Soc. Hort. Sci. 129:54-59. Bailey, D. and T. Bilderback. 1997. Alkalinity control for irrigation water used in nurseries and greenhouses. N.C. Univ. http://www.greenbeam.com/cyberconference/irr-alkalinity.html Baravon, A.I. 1981. Studies in the Begoniaceae. Phytologia Menor. 4:80-83. Berry, J.A., D.C. Fork, and S. Garrison. 1975. Mechanistic studies of thermal damage to leaves. Carnegie Inst. Washington Yrbk. 74:751-759. Berry, J.A. and O. Bjorkman. 1980. Photosynthetic response and adaptation to temperature in higher plant. Ann. Rev. Plant Physiol. 31:491-543. Bredmose, N., K. Kristiansen, and B. Nielsen. 2004. Propagation temperature, PPFD, auxin treatment, cutting size and cutting position affect root formation, axillary bud growth and shoot development in miniature rose (Rosa hybrida L.) plants and alter homogeneity. J. Hort. Sci. Biotechnol. 79:458-465. Bredmose, N.B. 1998. Growth, flowering, and postharvest performance of single-stemmed rose (Rosa hybrida L.) plants in response to light quantum integral and plant population density. J. Amer. Soc. Hort. Sci. 123:569-576. Bugbee, B. 1995. Nutrient management in recirculating hydroponic culture. Proceeding of 16th annual conference on hydroponics. Hydroponic Soc. Amer., San Ramon, Calif. P. 15 -30. Casella, E. and R. Ceulemans. 2002. Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year old Populus clones in coppice culture. Tree Physiol. 22:1277-1288. Chen J.J. and R.J. Henny. 2003. ZZ: A unique tropical ornamental foliage plant. HortTechnology 13:458-462. Chen, H. H., Z. Y. Shen, and P. H. Li. 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719-725. Close, D.C., C.L. Beadle, and M.J. Hovenden. 2001. Cold-induced photoinhibition and foliar pigment dynamics of Eucalyptus nitens seedlings during establishment. Aust. J. Plant Physiol. 28:1133-1141. Collard, R.M., J.N. Joiner, C.A. Conover and D.B. McConnell. 1977.Influence of shade and fertilizer on light compensation point of Ficus benjamina L. J. Amer. Soc. Hort. Sci. 102:447-449. Dole, J.M. and J.L. Gibson. 2006. Begonia hiemalis, p. 241-243. In: J.M. Dole and J.L. Gibson (eds.). Cutting propagation. Ball Publishing, Batavia, Ill., USA. Economou, A.S. and Read, P.E. 1986. Influence of light and irradiance on micropropagation of hardy deciduous azalea. J. Amer. Soc. Hort. Sci. 111:146-149. Enfield, A.L. 2002. Flower induction and cultural requirements for quick-cropping of the herbaceous perennials Veronica spicata, Phlox paniculata, Leucathemum ×superbum, Achillea, Gaura lindheimeri, and Campanulata. MS Thesis, Dept. of Horticulture, Mich. St. Univ., East Lansing. Erwin, J.E. and R.M. Warner. 2002. Determination of photoperiodic response group and effect of supplemental irradiance on flowering of several bedding plant species. Acta Hort. 580:95-99. Evans, J.R. and H. Poortrt. 2001. Photosynthesis acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant. Cell Environ. 24:755-767 Fokar, M., H.T. Nguyen, and A. Blum. 1998. Heat tolerance in spring wheat. I. Estimating cellular thermotolerance and its heritability. Euphytica 104:1–8. Fonteno, W.C. and R.A. Larson. 1982. Photoperiod and temperature effects on NonStop tuberous begonia. HortScience 17:899–901. Funnell, K.A., E.W. Hewett, J.A. Plummer, and I.J. Warrington. 2002. Acclimation of photosynthetic activity of Zantedeschia ‘Best Gold’in response to temperature and photosynthetic photon flux. J. Amer. Soc. Hort. Sci. 127:290-296. Gislerød, H.R. and L.M. Mortensen. 1990. Relative humidity and nutrient up take and growth of Begonia ×hiemalis. HortScience 25:524-526. Gooder, M. 2000. How we grow: Hiemalis begonia. GrowerTalks 64:83-88. Hall, A.E. 1992. Breeding for heat tolerancr. Plant Breed. Rev. 10:192-168. Hartman, H.T., D.E. Kester, F.T. Davies Jr., and R.L. Geneve. 1997. Plant propagation: Principles and practices. 6th edition. Prentice Hall, Upper Saddle River, Peru. Heide, O.M. 1962. Interaction of night temperature and day-length in flowering of Begonia ×cheimantha Everett. Physiol. Plant. 15: 729-735. Heide, O.M. 1964. Effects of light and temperature on the regeneration ability of Begonia leaf cuttings. Physiol. Plant. 17:789-804. Heide, O.M. 1965. Interaction of temperature, auxins, and cytokinins in the regeneration ability of Begonia leaf cuttings. Physiol. Plant. 18:891-920. Heide, O.M. and W. Rünger. 1985. Begonia. P. 4 – 13. In: A.H. Halevy (ed.), CRC handbook of flowering. Vol. Ⅱ. CRC Press, Inc. Boca Raton, FL. Horridge, J.S. and K.E. Cockshull. 1989. The effect of the timing of a night-break on flower initiation in Chrysanthemum morifolium Ramat. J. Hort. Sci. 64:183-188 Hossain, M. M., H. Takeda, and T. Senboku. 1995. Improved method of determination of membrane thermostability for screening heat-tolerant and sensitive varieties in Brassica. JIRCAS J. 2:19-27. Huang, B. and Q. Xu. 2000. Root growth and nutrient element status of creeping bentgrass cultivars differing in heat tolerance as influenced by supraoptimal shoot and root temperatures. J. Plant Nutri. 23:979-990. Ismail, A.M. and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762-1768. James, E.C. and M.W. van Iersel. 2001. Fertilizer concentration affects growth and flowering of subirrigated petunias and begonias. HortScience 36:40-44. Jeong, K.Y., C. Pasian, and D. Tay. 2005. Response of six Begonia species to different substrate pH. HortScience 40:993-1147. Kaczperski, M. P., W. H. Carlson, and M. G, Karlsson. 1991. Growth and development of Petunia × hybrida as a function of temperature and irradiance. J. Amer. Soc. Hort. Sci. 116:32-237. Kang, J.G. and M.W. van Iersel. 2002. Nutrient solution concentration affects growth of subirrigated bedding plants. J. Plant Nutr. 25:387-403 Karlsson, M.G. 1992. Leaf unfolding rate in Begonia ×hiemalis. HortScience 27:109-110. Karlsson, M.G. and J.W. Werner. 1999. Photoperiodic control of flowering in seed-propergation Begnia ×tuberhybrida Voss. HortScience 34:62-63. Karlsson, M.G., J.W. Werner and H.C.H. McIntyre. 1990. Temperature during early development affects plant morphology of Begonia ×hiemalis. HortScience 25:1002-1183. Kent, M.W. and D.W. Reed. 1996. Nitrogen nutrition on New Guinea impatien ‘Barbados’ and Spathiphyllum ‘Petite’ in a subirrigation system. J. Amer. Soc. Hort. Sci. 121:816-819. Kläring, H.P. and W. Cierpinski. 1998. Control of nutrient solution concentration depending on greenhouse climate in a sweet pepper crop. Acta Hort. 458:141-146. Krans, J.V. and G.V. Johnson. 1974. Some effects of subirrigation on bentgrass during heat stress in the field. Agron. J. 66:526-530. Kristiansen, K., N. Bredmose, and W. Nielsen. 2005. Influence of propagation temperature, photosynthetic photon flux density, auxin treatment and cutting position on root formation, axillary bud and shoot development in Schlumbergera ‘Russia Dancer’. J. Hort. Sci. Biotechnol. 80:297-302. Lasseigne, F.T., S.L. Warren, F.A. Blazich, and T.G. Ranney. 2007. Day/night temperature affects growth and photosynthesis of cultivated Salvia taxa. J. Amer. Soc. Hort. Sci. 132:492-500. Lawlor, D.W. 1995. Photosynthesis, productivity and environment. J. Expt. Bot. 46:1449-1461. Levitt, J. 1980. Responses of plant to environmental stress. Vol. 1. Chilling, freezing and high temperature stresses. Academic Press, New York. Liu, X. and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop. Sci. 150:1-19. Lopez, R.G. and E.S. Runkle. 2006. Daily light integral influences rooting and quality of petunia cuttings. Acta Hort. 711:369-374. Marcum, K.B. 1998. Cell membrane thermostability and whole-plant heat tolerance of Kentuchy bluegrass. Crop Sci. 38: 1214-1218. Nemali, K.S. and M.W. van Iersel. 2003. Photosynthesis- light response of whole plants of wax begonia growth under different light intensities. SNA Research Conference 48:559-563. Nemali, K.S. and M.W. van Iersel. 2004a. Acclimation of wax begonia to light intensity: changes in photosynthesis, respiration, and chlorophyll concentration. J. Amer. Soc. Hort. Sci. 129:745-751. Nemali, K.S. and M.W. van Iersel. 2004b. Light intensity and fertilizer concentration for species differing in light requirement and growth rate. HortScience 39:1293-1297. Niu, G., D.S. Rodriguez, and Y.T. Wang. 2006. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse condition. HortScience 41:1408-1411. Niu, G., R.D. Heins, A. Cameron, and W. Carlson. 2001. Temperature and daily light integral influence plant quality and flower development of Campanula carpatica ‘Blue Clips’, ‘Deep Blue Clips’, and Campanula ‘Birch Hybrid’. HortScience 36:664-668. Oloomi, H. and R.N. Payne. 1982. Effects of photoperiod and pinching on development of Begonia ×tuberhybrida. HortScience 17:337–338. Oren-Shamir, M., L. Shaked-Sachray, A. Nissim-Levi, and D. Weiss. 2000. Effect of growth temperature on Aster L. flower development. HortScience 35:28-29. Pearson, S., S.R.A. Parker, S.R. Adams. P. Hadley and D.R. May. 1995. The effects of temperature on the flower size of pansy (Viola ×wittrockiana Gams.). J. Hort. Sci. 70: 183-190. Peng, C.I and C.Y. Sue. 2000. Begonia ×taipeiensis (Begoniaceae), a new natural hybrid in Taiwan. Bot. Bull. Acad. Sin. 41:151-158. Peng, C.I and T.Y. Chiang. 2000. Molecular confirmation of unidirectional hybridization in Begonia ×taipeiensis Peng (Begoniaceae) from Taiwan. Ann. Missouri Bot. Gard. 87:273-285. Peng, C.I. and Y.K. Chen. 1990. Begonia austrotaiwanensis (Begoniaceae), a new species from southern Taiwan. J. Arnold Arbor. 71:567-574. Peng, C.I. and Y.K. Chen. 1991. Hybridity and parentage of Begonia buimontana Yamamoto (Begoniaceae) from Taiwan. Ann. Missouri Bot. Gard. 78:995-1001. Peng, C.I., Y.K. Chen and H.F. Yen. 1988. Begonia ravenii (Begoniaceae), a new species from Taiwan. Bot. Bull. Acad. Sin. 29:217-222. Peng, C.I., Y.K. Chen, and W.C. Leong. 2005. Five new species of Begonia (Begoniaceae) from Taiwan. Bull. Acad. Sin. 46: 255-272. Peuke, A.D., Hartung, W., Jeschke, W.D. 1994. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. Ⅱ. Growth with low or high nitrate supply. J. Expt. Bot. 45:733-740. Ranney, T. G. and M. M. Peet. 1994. Heat tolerance of five taxa of birch (Betula): physiological responses to supraoptimal leaf temperatures. J. Amer. Soc. Hort. Sci. 119:243-248. Reich, P.B., I.J. Wright, J. Cavender-Bares, J. M. Craines, J. Oleksyn, M. Westoby and M.B. Walters. 2003. The evolution of plant functional variation: Traits, spectra, and strategies. Intl. J. Plant Sci. 164:143-164. Saadalla, M.M., J.S. Quick, and J.F. Shanahan. 1990. Heat tolerance in winter wheat: II. Membrane thermostability and field performance. Crop Sci. 30:1248-1251. Sandved, G. 1969. Flowering in Begonia hiemalis Fotsch as affected by daylength and temperature. Acta Hort. 14:61-66. Shanahan, J. F., I. B. Edwards, J. S. Quick, and J. R. Fenwick. 1990. Crop ecology, production & management: Membrane thermostability and heat tolerance of spring wheat. Crop Sci. 30:247-251. Sharman, K.V., M. Sedgley, and D. Aspina. 1989. Effect of photoperiod, temperature and plant age on floral initiation and inflorescence quality in the Australian native daisies Helipterum roseum and Helichrysum bracteatum in relation to cut-flower production. J. Hort. Sci. 35: 161-175. Shim, M.S., W. Oh, and K.S. Kim. 2005. Effects of temperature and daylength on rooting and growth of Elatior begonia cuttings. J. Kor. Soc. Hort. Sci. 46:200-203. Shimada, Y., G. Mori, Y. Katahara, and M. Oda. 2006. Formation of adventitious buds on leaf pieces cutting of Begonia ×tuberhybrida Group. J. Jpn. Soc. Hort. Sci. 75:318-322. Smith, B., D.C. Wasshausen, J. Golding, and C.E. Karegeannes. 1986. Begoniaceae. Part 1: Illustrated Key; Part 2; Annotated Species List. Smithsonian Contr. Bot. 60:1-584. Suh, J.K. and J.S. Lee. 1997. Leaf cutting propagation, growth and flowering of Lachenalia. Acta Hort. 430:369-376. Tebbitt, M.C. 2005. Propagation, p. 28-29. In: M.C. Tebbitt (ed.), Begonias. Timber Press, Ore., USA. USDA. 2006. Floriculture Crops 2005 Summary. 7 Nov. 2006. <http://usda.mannlib.cornell.edu/usda/current/FlorCrop/FlorCrop-04-26-2006. pdf> van Iersel, M.W. 1999. Fertilizer concentration affects growth and nutrient composition of subirrigated pansies. HortScience 33:193-196. Warner, R.M. and J.E. Erwin, 2005. Prolonged high temperature exposure and daily light integral impact growth and flowering of five herbaceous ornamental speies. J. Amer. Soc. Hort. Sci. 130:319-325. Warner, R.M. and J.K. Erwin. 2002. Photosynthetic responses of heat-tolerant and heat-sensitive cultivars of Impatiens Hawkeri and Viola ×wittrockiana to high temperature exposures. Acta Hort. 580:215-219. Weibel, J., E.K. Chacko, W.J.S. Downton and P. Ludders. 1994. Influence of irradiance on photosynthesis and growth of mangosteen (Garcinia mangostana L.) seedlings. Tree Physiol. 14:263-274. Whealy, C.A., T.A. Nell, and J.E. Barrett. 1987. High temperature effects on growth and floral development of chrysanthemum. J. Amer. Soc. Hort. Sci. 112; 464-468. Whipker, B.E., S.K. Dasoju, M.S. Dosmann, and J.K. Iles. 1998. Effect of fertilizer concentration on growth of variegated and non-variegated double impatiens. HortScience 33: 466. Wright, R.D. 1986. The pour-through nutrient extraction procedure. HortScience 21:227-229. Wu, M. T. and S. J. Wallner. 1983. Heat stress response in cultured plant cells: Development and comparison of viability tests. Plant Physiol. 72:817-820. Xu, Q. anc B. Huang. 2001. Morphological and physiology characteristics associated with heat tolerance in creeping bentgrass. Crop Sci. 41:127-133. Yeh, D,M. and P.Y. Hsu. 2004. Differential growth and photosynthetic response of selected cultivars of English ivy to irradiance. J. Hort. Sci. Biotech. 79:633-637. Yeh, D. M., L. Lin and C. J. Wright 2000. Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot-root ratio of Spathiphyllum. Scientia Hort. 86:223-233 Yeh, D.M. and H.F. Lin. 2003. Thermostability of cell membranes as measure of heat tolerance and relationship to flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128: 656-660. Yeh, D.M. and H.M. Wang. 2000. Effects of irradiance on growth, net photosynthesis and indoor performance of the shade-adapted plant, maidenhair fern. J. Hort. Sci. Biotech. 75:293-298. Zimmer, K. 1973. Some photoperiodic responses of Begonia. Acta Hort. 31:51-56. Zimmer, K. 1976. Unusual effects of night break. Acta Hort. 64:143-148. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40688 | - |
dc.description.abstract | 原生秋海棠屬植物中不乏具觀賞價值或具育種潛力者。本研究調查數種臺灣原生秋海棠適宜之繁殖溫度及光度,並探討溫度、光度、光週期及養液濃度對生長之影響。
溪頭秋海棠、巒大秋海棠、蘭嶼秋海棠及白斑水鴨腳葉片扦插之存活率均以25/20 ℃處理者較高。於25/20 ℃及30/25 ℃下不定芽數、芽長及新葉數較多。參試秋海棠葉片扦插於53及107 µmol∙m-2∙s-1光度下存活率較高,而不定根數會隨光度由53 µmol∙m-2∙s-1上升 至198 µmol∙m-2∙s-1而減少。 觀察秋海棠於20/15、25/20及30/25 ℃栽培溫度之生長量,評估秋海棠種間對熱適應性之差異,植株株高、葉數、總葉面積、莖及根乾重隨溫度由25/20℃上升至30/25 ℃而減少。高溫30/25 ℃栽培之蘭嶼秋海棠乾物重及淨光合作用速率下降較少。巒大秋海棠於30/25 ℃下無法存活,且對熱較敏感。 蘭嶼秋海棠、白斑水鴨腳、溪頭秋海棠及巒大秋海棠於30.6 ℃高溫栽培2個月後,取剛成熟展開葉,利用24、30、36、42、48、54、60或66 ℃水浴加熱葉圓片20分鐘。相對熱傷害值與水浴溫度呈S形曲線關係,可利用48 ℃水浴溫度鑑別種間細胞膜熱穩定性之差異。將蘭嶼秋海棠、溪頭秋海棠及巒大秋海棠分別置於20/15、25/20及30/25 ℃栽培75天後,栽培於30/25 ℃之蘭嶼秋海棠及溪頭秋海棠之相對熱傷害值較低,且S形曲線顯著較20/15 ℃處理者右移。巒大秋海棠於25/20 ℃下相對熱傷害值較其餘參試之秋海棠高。 為評估秋海棠種間對光度適應性之差異,調查栽培於97、211及315 µmol∙m-2∙s-1光度栽培植株之生長量及光合作用之影響,結果蘭嶼秋海棠之總葉面積、葉數、地上部、地下部乾重、光飽和點及最大光合作用值均於栽培光度由97上升至315 µmol∙m-2∙s-1而增加,顯示蘭嶼秋海棠需光性較高,對光度適應範圍較廣。溪頭秋海棠之光飽和點及最大光合作用值隨栽培光度上升而增加。白斑水鴨腳及巒大秋海棠之光飽和點於三種栽培光度間差異不大且光飽和點低,提高栽培光度無法顯著增加其光合作用效率。四參試種之光補償點均未隨栽培光度上升而增加。 於自然日長(10.3-12.3 小時)、延長日照(17:00-21:00 點燈,日照時間為14.7-15.3 小時)及暗期中斷(接受自然日照,但於22:00 - 02:00 進行暗期中斷)下栽培蘭嶼秋海棠、白斑水鴨腳、溪頭秋海棠、巒大秋海棠及圓果秋海棠142天後,白斑水鴨腳於延長日照及暗期中斷下較早進入花芽分化。蘭嶼秋海棠於自然日長及暗期中斷下花苞可見天數及到花較早,而延長日照處理者無可見花苞。溪頭秋海棠、巒大秋海棠及圓果秋海棠於三種光週處理142天後尚未有可見花苞。 以0%、25%、50%及100%強生氏營養液栽培蘭嶼秋海棠、白斑水鴨腳、鹿谷秋海棠、岩生秋海棠及溪頭秋海棠四個月後調查其生長情形,結果顯示五種原生秋海棠均以處理25%及50%強生氏營養液栽培者之株高較高、葉數較多及總葉面積較佳且地上部及地下部乾重較重。 | zh_TW |
dc.description.abstract | Some native Begonia species may have potential for the breeding of heat-tolerance or ornamental purposes. This thesis aimed to determine the effects of temperature and irradiance of propergation of leaf cuttings, and to study the the effects of temperature, irradiance, photoperiod and nutrient solution concentration on growth of several Begonia species native to Taiwan.
For leaf cutting propagation, highest survival rate of B. chitoensis, B. palmate, B. fenicis and B. formosana occurred at 25/20 ℃. The highest adventitious shoot number, length and new leaf number were measured in cuttings at 25/20 ℃ and 30/25 ℃. Survival rate was higher at 53 and 107 µmol∙m-2∙s-1, while the adventitious root number decreased with increasing photosynthetic photon flux. To evaluate heat tolerence among species, plants of three Begonia species were grown at 20/15℃, 25/20℃, and 30/25 ℃. Plant height, leaf number, leaf area, shoot and root dry weight decreased with increasing temperature. Reduced dry weight and net photosynthetic rate were not so apparent in B. fenicis at 30/25 ℃, as compared with other species. B. palmate was heat sensitive and could not survive at 30/25 ℃. Plant of B. fenicis, B. formosana, B. chitoensis and B. palmate were grown at 30.6 ℃ for two months, and their recently development leaves species were evaluated for cell membrane thermostability measured at water bath temperatures of 24, 30, 36, 42, 48, 54, 60 or 66 ℃ for 20 minutes. The relationship between the relative injury value occurring in leaf tissue discs and treatment temperature was sigmoidal. Reduce relative injury value at 48 ℃ was more apparent in B. fenicis and B. chitoensis than the heat-intolerance B. palmate after 30/25 ℃ treatment for 75 days. Effects of irradiance on growth and net photosynthesis were studied in four Begonia species grown in controlled environments at 97, 211, and 315 µmol∙m-2∙s-1. Leaf area, leaf nimber, shoot and root dry weight, light saturation point and maximum values of net photosynthetic of B. fenicis increased as light intensity increased from 97 µmol∙m-2∙s-1 to 315µmol∙m-2∙s-1. Light saturation point and maximum values of net photosynthetic of B. chitoensis also increased as light intensity increased, while light saturation point and of B. formosana and B. palmata was not affected with increasing light intensity. Light compensation point of four begonia species was affected little with increased light intensity. For photoperiod treatments, plants of B. fenicis, B. formosana, B. chitoensis, B. palmate and B. aptera were grown under natural daylength (10.3-12.3 h), day length extension (14.7-15.3 h) or night interruption (natural daylength with night interruption at 22:00 - 02:00) treatments for 142 days. Flowers initiated earlier under daylength extension and night interruption in B. formosana. Flower initiation occurred earlier under natural day length and night interruption in B. fenicis, but no visible bud formation was observed under day length extension. B. chitoensis, B. palmate and B. aptera did no show visible bud formation at the termination of the experiment. B. fenicis, B. formosana, B. lukuana, B. ravenii and B. chitoensis were fertigated with 0%, 25%, 50% and 100% Johnson’s solution for four months. Plant height, leaf number, leaf area, shoot and root dry weight of five begonia species were higher at 25% and 50% Johnson’ solution than 0% or 100% Johnson’s solution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:56:03Z (GMT). No. of bitstreams: 1 ntu-97-R95628105-1.pdf: 1031420 bytes, checksum: 37cbda3344d31e6b79fc527f8fae279c (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目錄 i
表目錄 iii 圖目錄 iv 中文摘要 v 前 言 1 前人研究 4 一、秋海棠之簡介 4 二、溫度及光度對花卉作物扦插繁殖之影響 6 (一) 溫度對花卉作物扦插繁殖之影響 6 (二) 光度對花卉作物扦插繁殖之影響 7 三、高溫對花卉作物生長及開花之影響 7 (一) 高溫對葉綠素含量之影響 7 (二) 高溫對花卉作物淨光合作用速率之影響 7 (三) 高溫對生長之影響 8 (四) 高溫對花卉作物開花之影響 8 (五) 高溫對作物細胞膜熱穩定性之影響 9 四、光度對秋海棠等花卉作物光合作用及生長之影響 12 五、光週期對秋海棠屬植物生長及開花之影響 13 六、養液濃度對草本花卉植物生長之影響 14 材料與方法 17 一、試驗材料之蒐集與母本管理 17 二、試驗方法 17 試驗(一)、溫度及光度對臺灣原生秋海棠屬植物葉插繁殖之影響 17 1. 溫度對臺灣原生秋海棠屬植物葉插繁殖之影響 17 2. 光度對臺灣原生秋海棠屬植物葉插繁殖之影響 18 試驗(二)、溫度對原生秋海棠屬植物光合作用及生長之影響 19 試驗(三)、溫度對原生秋海棠屬植物細胞膜熱穩定性之影響 20 試驗(四)、光度對原生秋海棠屬植物光合作用及生長之影響 21 1. 光度對原生秋海棠屬植物光合作用之影響 21 2. 栽培光度對原生秋海棠屬植物光合作用之影響 22 試驗(五)、光週期對原生秋海棠屬植物生長及開花之影響 23 試驗(六)、養液濃度對原生秋海棠屬植物生長之影響 24 三、統計分析 25 結 果 27 試驗(一)、溫度及光度對原生秋海棠屬植物葉插繁殖之影響 27 1. 溫度對原生秋海棠屬植物葉插繁殖之影響 27 2. 光度對臺灣原生秋海棠屬植物葉插繁殖之影響 27 試驗(二)、溫度對原生秋海棠屬植物光合作用及生長之影響 28 試驗(三)、溫度對原生秋海棠屬植物細胞膜熱穩定性之影響 29 試驗(四)、光度對原生秋海棠屬植物光合作用及生長之影響 30 1. 光度對原生秋海棠屬植物光合作用之影響 30 2. 栽培光度對原生秋海棠屬植物光合作用及生長之影響 31 試驗(五)、光週期對原生秋海棠屬植物生長及開花之影響 32 試驗(六)、養液濃度對原生秋海棠屬植物生長之影響 33 討 論 36 溫度及光度對臺灣原生秋海棠屬植物葉插繁殖之影響 36 溫度對原生秋海棠屬植物光合作用及生長之影響 38 光度對原生秋海棠屬植物光合作用及生長之影響 40 光週期對原生秋海棠屬植物生長及開花之影響 42 養液濃度對原生秋海棠屬植物生長之影響 43 結 論 46 參考文獻 75 附錄 1. 強生氏營養液配方 82 附錄 2. 七種臺灣原生秋海棠之葉插及生長習性 83 | |
dc.language.iso | zh-TW | |
dc.title | 臺灣原生秋海棠屬植物之生長習性 | zh_TW |
dc.title | Growth Habits of Begonia Species Native to Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊雯如,沈榮壽,嚴新富 | |
dc.subject.keyword | 秋海棠,繁殖,溫度,光度,光週期, | zh_TW |
dc.subject.keyword | begonia,propagation,temperature,light intensity,photoperiod, | en |
dc.relation.page | 86 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。