請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40682
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 柯淳涵(Chun-Han Ko) | |
dc.contributor.author | Ko-Cheng Chang | en |
dc.contributor.author | 張可承 | zh_TW |
dc.date.accessioned | 2021-06-14T16:55:48Z | - |
dc.date.available | 2008-08-06 | |
dc.date.copyright | 2008-08-06 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-29 | |
dc.identifier.citation | Aa, K., R. Flengsrud, V. Lindahl and A. Tronsmo (1994) Characterization of production and enzyme properties of an endo-β-l,4-glucanase from Bacillus subtilis CK-2 isolated from compost soil. Antonie van Leeuwenhoek. 66: 319-326.
Ahn, D.H., H. Kim and M. Y. Pack (1993) Cleavage of Bacillus subtilis endo-β-1,4-glucanase by B. megaterium prorease. Biotechnology Letters. 15(2): 127-132. Akiba, S., Y. Kimura, K. Yamamoto and H. Kumagai (1995) Purification and Characterization of a Protease-Resistant cellulase from Aspergillus niger. Journal of Fermentation and Bioengineering. 79(2): 125-130. Amitai, G., O. Belenkiy, B. Dassa, A. Shainskaya and S. Pietrokovski (2003) Molecular Microbiology. 47(1): 61–73. Bayer, E.A., L.J.W. Shimon, Y. Shoham and R. Lamed (1998) Cellulosomes - Structure and ultrastructure. Journal of Structural Biology. 124: 221-234. Beguin, P. and J.P. Aubert (1994) The biological degradation of cellulose. FEMS Microbiology Reviews. 13: 25-58. Berner, R.A. (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature. 426: 323–326. Bhat, K.M., A.J. Hay, M. Claeyssens and T.M. Wood (1990) Study of the mode of action and site specificity of the endo-1,4-β-D-giucanases of the fungus Penicillium pinophilum with normal, 3H labelled, reduced and chromogenic cello-oligosaccharides. Biochemical Journal. 266: 371-378. Bhat, M.K. and S. Bhat (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances. 15: 585–620. Bischoff, K.M., S. Liu and S.R. Hughes (2007) Cloning and characterization of a recombinant family 5 endoglucanase from Bacillus licheniformis strain B-41361. Process Biochemistry. 42: 1150–1154. Blanco, A., P. Diaz, J. Martinez, T. Vidal, A. L. Torres, and F. I. J. Pastor. (1998) Cloning of a new endoglucanase gene from Bacillus sp. BP-23 and characterisation of the enzyme. Performance in paper manufacture from cereal straw. Applied Microbiology and Biotechnology. 50: 48-54. Boisset, C., C. Fraschini, M. Schulein, B. Henrissat and H. Chanzy (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Applied and Environmental Microbiology. 66: 1444–1452. Boisset, C., C. Petrequin, H. Chanzy, B. Henrissat and M. Schulein (2001) Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnology and Bioengineering. 72: 339-345. Boisset, C., H. Chanzy, B. Henrissat, R. Lamed, Y. Shoham and E.A. Bayer (1999) Digestion of crystalline cellulose substrates by the Clostridium thermocellum cellulosome: structural and morphological aspects. Biochemical Journal. 340: 829-835. Cavaco-Paulo, A. (1998) Mechanism of cellulase action in textile processes. Carbohydrate Polymers. 37: 273–277. Chen, W.-L. (2004) Isolation and characterization of a xylanase generating Paenibacillus strain from kraft black liquor. A Thesis Presented to the Faculty of the Graduate Institute of Forestry National Taiwan University in Partial Fulfillment of the Requirements for the Degree of Master of Science. Cooper A.A. and T.H. Stevens (1995) Protein splicing: self-splicing of genetically mobile elements at the protein level. Trends in Biochemical Sciences. 20(9): 351-356. Coughlan, M.P. (1985a) Cellulases: Production properties and applications. Biochemical Society Transactions. 13: 405-406. Coughlan, M.P. (1985b) The properties of fungal and bacterial cellulases with comment on their production and application. In: Biotechnology and Genetic Engineering Reviews. Vol 3, (Russell, G.E., editor), Interscience, Newcastle-upon-Tyne, pp 39-109. Coughlan, M.P. and L.G. Ljungdahl (1988) Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems. In: Biochemistry and Genetics of Cellulose Degradation, FEMS Symposium. 43, (Aubert, J.-P., P. Beguin and J. Millet, editors) Academic Press, London, pp 11-30. Dalboge, H. and H. P. Heldt-Hansen. (1994) A novel method for efficient expression cloning of fungal enzyme genes. Molecular Genetics and Genomics. 243: 253-260. Das, H. and S. K. Singh (2004) Useful byproducts from cellulosic wastes of agriculture and food industry-a critical appraisal. Critical Reviews in Food Science and Nutrition. 44: 77–89. Dassa, B., H. Haviv, G. Amitai and S. Pietrokovski (2004) Protein Splicing and Auto-cleavage of Bacterial Intein-like Domains Lacking a C-flanking Nucleophilic Residue. The Journal of Biological Chemistry. 279(31): 32001–32007. Davies, G.J., L. Mackenzie, A. Varrot, M. Dauter, A.M. Brzozowski, M. Schulein and S.G. Withers (1998) Snapshots along an enzymatic reaction coordinate: Analysis of a retaining beta-glycoside hydrolase. Biochemistry. 37: 11707-11713. Davies, G.J., M. Dauter, M. Brzozowski, M.E. Bjornvad, K.V. Andersen and M. Schulein (1998) Structure of the Bacillus agaradherans family 5 endoglucanase at 1.6 A and its cellobiose complex at 2.0 A resolution. Biochemistry. 37: 1926–1932. Demain, A. L., M. Newcomb and J. H. D. Wu (2005) Cellulase, Clostridia, and Ethanol. Microbiology and Molecular Biology Reviews. 69(1): 124-154. Dhillon, N., S. Chibber, M. Saxena, S. Pajni and D.V. Vadehra (1985) A constitutive endoglucanase (CMCase) from Bacillus licheniformis 1. Biotechnology Letters. 7: 695-697. Din, N., N.R. Gilkes, B. Tekant, J.R.C. Miller, R.A.J. Warren and D.G. Kilburn (1991) Non-hydrolytic disruption of cellulose fibers by the binding domain of a bacterial cellulase. Biotechnology. 9: 1096–1099. Eriksson, K.E. (1978) Enzyme mechanisms involved in cellulose hydrolysis by the rot fungus Sporotrichum pulverulentum. Biotechnology and Bioengineering. 70: 317-332. Eriksson, K.E. and T.M. Wood (1985) Biodegradation of cellulose In: Biosynthesis and Biodegradation of Wood Components, (T. Higuchi, editor), Academic Press, New York, pp. 469-503. Gao, J., H. Weng, Y. Xi, D. Zhu and S. Han (2008) Purification and characterization of a novel endo-β-1,4-glucanase from the thermoacidophilic Aspergillus terreus. Biotechnology Letters. 30: 323-327. Garcia, O., A.L. Torres, J.F. Colom, F.I.J. Pastor, P. Diaz and T. Vidal (2002) Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose. 9: 115-125. George, S.P., A. Ahmad and M.B. Rao (2001) Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresource Technology. 77: 171-175. Gilbert, H.J. and G.P. Hazlewood (1993) Bacterial cellulases and xylanases. Journal of General Microbiology. 139: 187–194. Goldstein, M., M. Takagi, S. Hashida, O. Shoseyov, R. Doi and I. Segel (1993) Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. Journal of Bacteriology. 175: 5762-5768. Gum, E.K. Jr. and R.D. Jr. Brown (1976) Structural characterization of a glycoprotein cellulase, 1,4-β-D-glucan cellobiohydrolase C from Trichoderma viride. Biochimica et Biophysica Acta. 466: 371-386. Hakamada, Y., K. Koike, T. Yoshimatsu, H. Mori, T. Kobayashi and S. Ito (1997) Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles. 1(3): 151-156. Hamer, G. (2003) Solid waste treatment and disposal: effects on public health and environmental safety. Biotechnology Advances. 22: 71–79. Han, S.J., Y.J. Yoo and H.S. Kang (1995) Characterization of a Bifunctional Cellulase and Its Structural Gene: The cel gene of Bacillus sp. D04 has exo- and endoglucanase activity. The Journal of Biological Chemistry. 270(43): 26012–26019. Henrissat, B. and A. Bairoch (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal. 316 :695–696. Himmel, M.E., M.F. Ruth and C.E. Wymans (1999) Cellulase for commodity products from cellulosic biomass. Current Opinion in Biotechnology. 10: 358-364. Hinman, N.D., D.J. Schell, C.J. Riley, P.W. Bergeron and P.J. Walter (1992) Preliminary estimate of the cost of ethanol production for SSF technology. Applied Biochemistry and Biotechnology. 34/35: 639-649. Hoffert, M. I., K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk and T. M. L. Wigley (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science. 298: 981–987. Huang, X.P. and C. Monk (2004) Purification and characterization of a cellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov. World Journal of Microbiology and Biotechnology. 20: 85–92. Ito, S (1997) Alkaline cellulases from alkaliphilic Bacillus: enzymatic, properties, genetics, and application to detergents. Extremophiles. 1: 61–66. Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and H. Yuji (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structure. Extremophiles. 2: 185–190. Jarvis, M. (2003) Cellulose stacks up. Nature. 426: 611–612. Jung, K.H., Y.C. Chun, J.-C. Lee, J.H. Kim and K.-H. Yoon (1996) Cloning and Expression of a Bacillus sp. 79-23 Cellulase Gene. Biotechnology Letters. 18(9): 1077-1082. Kamm, B. and M. Kamm (2004) Principles of biorefineries. Applied Microbiology and Biotechnology. 64: 137–145. Kim, H., S.F. Kim and M.Y. Pack (1991) C-terminal processing of bacillus subtilis BSE616 endo-β-1,4-glucanase in Bacillus megaterium. Biotechnology Letters. 13: 799-804. Kim, J.-Y., S.-H. Hur and J.-H. Hong (2005) Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnology Letters. 27: 313–316. Ko, C.-H., W.-L. Chen, C.-H. Tsai, W.-N. Jane, C.-C. Liu and J. Tu (2007) Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresource Technology. 98: 2727–2733. Konig, J., R. Grasser, H. Pikor and K. Vogel (2002) Determination of xylanase, β-glucananse, and cellulase activity. Analytical and Bioanalytical Chemistry. 374: 80-87. Koshland, D.E. (1953) Stereochemistry and the mechanism of enzymatic reactions. Biological Reviews of the Cambridge Philosophical Society. 28: 416-436. Lee, Y.-J., B.-K. Kim, B.-H. Lee, K.-I. Jo, N.-K. Lee, C.-H. Chung, Y.-C. Lee and J.-W. Lee (2006) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology. 99: 378–386. Lindahl, V., K. Aa and A. Tronsrno (1994) Nucleotide sequence of an endo-β-1,4-glucanase gene from Bacillus subtilis CK-2. Antonie van Leeuwenhoek. 66: 327-332. Linder, M. and T. T. Teeri (1997) The roles and function of cellulose-binding domains. Journal of Biotechnology. 57: 15-28. Liu, X.-Q., J. Yang and Q. Meng (2003) Four Inteins and Three Group II Introns Encoded in a Bacterial Ribonucleotide Reductase Gene. The Journal of Biological Chemistry. 278(47): 46826–46831. Liu, Y., J. Zhang, Q. Liu, C. Zhang and Q. Ma (2004) Molecular Cloning of Novel Cellulase Genes cel9A and cel12A from Bacillus licheniformis GXN151 and Synergism of Their Encoded Polypeptides. Current Microbiology. 49: 234–238. Lynd, L. R., H. Jin, J. G. Michels, C. E. Wyman, and B. Dale (2003) Bioenergy: background, potential, and policy. Center for Strategic and International Studies, Washington, D.C. [Online.] http://agriculture.senate.gov/Hearings/hearings.cfm?hearingid1161&witnessId3320. Lynd, L.R. (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annual Review of Energy and the Environment. 21: 403-465. Lynd, L.R., J.H. Cushman, R.J. Nichols and C.E. Wyman (1991) Fuel ethanol from cellulosic biomass. Science. 251: 1318-1323. Mandels, M. (1985) Applications of cellulases. Biochemical Society Transactions. 13: 414-415. Mawadza, C., R. Hatti-Kaul, R. Zvauya and B. Mattiassona (2000) Purification and characterization of cellulases produced by two Bacillus strains. Journal of Biotechnology. 83: 177-187. McHale, A. and M.P. Coughlan (1980) Synergistic hydrolysis of cellulose by components of the extracellular cellulase system of Talaromyces emersonii. FEBS Letters. 117: 319-322. Minamiguchi, K., T. Ooi, T. Kawaguchi, H. Okada, S. Murao and M. Arai (1995) Secretive Expression of the Aspergillus aculeatus Cellulase (FI-CMCase) by Saccharomyces cerevisiae. Journal of Fermentation and Bioengineering. 79(4): 363-366. Mishra, C., M. Vaidya, M. Rao and V. Deshpande (1983) Purification and properties of two exo-cellobiohydrolases from a cellulolytic culture of Fusarium lini. Enzyme and Microbial Technology. 5: 430-434. Moloney, A.P., S.I. McCrae, T.M. Wood and M.P. Coughlan (1985) Isolation and characterization of the 1,4-β-D-giucan glucanohydrolases of Talaromyces emersonii. Biochemical Journal. 225: 365-374. Morag, E., A. Lapidot, D. Govorko, R. Lamed, M. Wilchek, E. Bayer and Y. Shoham (1995) Expression, purification, and characterisation of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Ciostridium thermocellum. Applied and Environmental Microbiology. 61: 1980-1986. Murata, M., E. Hoshino, M. Yokosuka and A. Suzuki (1991) New detergent mechanism with use of novel alkaline cellulase. Journal of the American Oil Chemists Society. 68: 553–558. Nakamura, A., T. Uozumi and T. Beppu (1987) Nucleotide sequence of a cellulase gene of Bacillis subtilis. European Journal of Biochemistry. 164: 317-320. Nummi, M., M.L. Niku-Paavola, A. Lappalainen, T.M. Enari and V. Raunio (1983) Cellobiohydrolase from Trichoderma reesei. Biochemical Journal. 215: 677-683. Ogura, J., A. Toyoda, T. Kurosawa, A.L. Chong, S. Chohnan and T. Masaki (2006) Purification, Characterization, and Gene Analysis of Cellulase (Cel8A) from Lysobacter sp. IB-9374. Bioscience, Biotechnology, and Biochemistry. 70(10): 2420-2428. Paetzel, M., A. Karla, N.C.J. Strynadka and R.E. Dalbey (2002) Signal Peptidases. Chemical Reviews. 102: 4549-4579. Park, S.H., H.K. Kim and M.Y. Pack (1991) Characterization and Structure of the Cellulase Gene of Bacillus subtilis BSE616. Agricultural and Biological Chemistry. 55(2): 441-448. Paulus, H. (2001) Inteins as Enzymes. Bioorganic Chemistry. 29:119–129. Perler, F.B., M.-Q. Xu and H. Paulus (1997) Protein splicing and autoproteolysis mechanisms. Current Opinion in Chemical Biology. 1: 292-299. Rincon, M. T., S. I. McCrae, J. Kirby, K. P. Scott, and H. J. Flint. (2001) EndB, a multidomain family 44 cellulase from Ruminococcus flavefaciens 17, binds to cellulose via a novel cellulose-binding module and to another protein via a dockerin domain. Applied and Environmental Biotechnology. 67: 4426-4431. Robson, L.M. and G.H. Chambliss (1984) Characterization of the cellulolytic activity of a Bacillus isolate. Applied and Environmental Microbiology. 47: 1039-1046. Robson, L.M. and G.H. Chambliss (1986) Cloning of the Bacillus subtilis DLG β-1,4-glucanase gene and its expression in Escherichia coli and B. subtilis. Journal of Bacteriology. 165(2): 612-619. Robson, L.M. and G.H. Chambliss (1987) Endo-β-1,4-Glucanase Gene of Bacillus subtilis DLG. Journal of Bacteriology. 169(5): 2017-2025. Sashihara, N., T. Kudo and K. Horikoshi (1984) Molecular Cloning and Expression of Cellulase Genes of Alkalophilic Bacillus sp. Strain N-4 in Escherichia coli. Journal of Bacteriology. 158(2): 503-506. Schulein, M (2000) Protein engineering of cellulases. Biochimica et Biophysica Acta. 1543: 239-252. Singh, J., N. Batra and R.C. Sobti (2001) A highly thermostable, alkaline CMCase produced by a newly isolated Bacillus sp. VG1. World Journal of Microbiology & Biotechnology. 17: 761–765. Singh, J., N. Batra and R.C. Sobti (2004) Purification and characterisation of alkaline cellulase produced by a novel isolate, Bacillus sphaericus JS1. Journal of Industrial Microbiology & Biotechnology. 31:51-56. Sinnott, M.L. (1990) Catalytic mechanisms of enzymatic glycosyl transfer. Chemical Reviews. 90: 1171-1202. Sprey, B. and C. Lambert (1983) Titration curves of cellulases from Trichoderma reesei: demonstration of cellulase-xylanase-β-glucosidase containing complex. FEMS Microbiology Letters. 18: 217-222. Thayer, D.W. (1978) Carboxymethylcellulase produced by facultative bacteria from hind-gut of termite Reticulitermes hesperus. Journal of General Microbiology. 106: 13-18. Tomme, P., R.A.J. Warren and N.R. Gilkes (1995a) Cellulose hydrolysis by bacteria and fungi. Advances Microbiology Physiology. 37: 1–81. Tomme, P., R.A.J. Warren, R.C. Miller, D.G. Kilburn and N.R. Gilkes (1995b) Cellulose-binding domains: Classification and properties. ACS Symposium Series. 618: l43-163. Tsai, C.-H. (2005) Molecular cloning, overexpression and purification of Paenibacillus sp. isolate BL11 xylanase from black liquor. A Thesis Presented to the Faculty of the Graduate Institute of Forestry National Taiwan University in Partial Fulfillment of the Requirements for the Degree of Master of Science. Vrsanska, M. and P. Biely (1992) The cellobiohydrolase I from Trichoderma reesei QM9414: action on cello-oligosaccharides. Carbohydrate Research. 227: 19-27. Wallace, R.J. (1994) Ruminal microbiology, biotechnology, and ruminant nutrition - progress and problems. Journal of Animal Science. 72: 2992-3003. Wang, W., J. Liu, G. Chen, Y. Zhang and P. Gao (2003) Function of a low molecular weight peptide from Trichoderma pseudokoningii S38 during cellulose biodegradation. Current Microbiology. 46: 371–379. Wolfenden, R. and M. J. Snider (2001) The depth of chemical time and the powder of enzyme as catalysts. Account of Chemical Research. 34: 938–945. Wood, P. J., J. D. Erfle, and R. M. Teather. (1988) Use of complex formation between congo red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods in Enzymology. 160: 59-74. Wood, T.M. (1992) Fungal cellulases. Biochemical Society Transactions. 20: 46-53. Wood, T.M. and M.K. Bhat (1988) Methods for measuring cellulase activities. Macromolecular Crystallography. 160: 87-112. Wood, T.M. and S.I. McCrae (1982) Purification and some properties of a 1,4-β-D-glucan glucohydrolase associated with the cellulose from the fungus Penicillium funiculosum. Carbohydrate Research. 110: 291-303. Wood, T.M. and S.L. McCrae (1977) Cellulase from Fusarium solani: purification and properties of the C1 component. Carbohydrate Research. 57: 117-133. Wood, T.M. and S.L. McCrae (1982) Purification and some properties of the extracellular β-glucosidase of the cellulolytic fungus Trichoderma koningii. Journal of General Microbiology. 128: 2973-2982. Wood, T.M., S.I. McCrae and C.C Mac Farlane (1980), The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase. Biochemical Journal. 189: 51-65. Wyman, C. E. (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment. 24: 189–226. Wyman, C. E. and N. D. Hinman (1990) Ethanol: Fundamentals of production from renewable feedstocks and use as a transportation fuel. Applied Biochemistry and Biotechnology. 24-25: 735–753. Wyman, C. E., B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch and Y. Y. Lee (2005) Coordinated development of leading biomass pretreatment technologies. Bioresource Technology. 96: 1959–1966. Xu, Q., D. Buckley, C. Guan and H.-C. Guo (1999) Structural Insights into the Mechanism of Intramolecular Proteolysis. Cell. 98: 651–661. Ye, X.Y., T.B. Ng and K.J. Cheng (2001) Purification and characterization of a cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli. International Journal of Biochemistry and Cell Biology. 33: 87-94. Yoda, K., A. Toyoda, Y. Mukoyama, Y. Nakamura and H. Minato (2005) Cloning, Sequencing, and Expression of a Eubacterium cellulosolvens 5 Gene Encoding an Endoglucanase (Cel5A) with Novel Carbohydrate-Binding Modules, and Properties of Cel5A. Applied and Environmental Microbiology. 71(10): 5787–5793. Zechel, D.L. and S.G. Withers (2000) Glycosidase mechanisms: Anatomy of a finely tuned catalyst. Accounts of Chemical Research. 33: 11-18. Zhang, Y.-H. P. and L. R. Lynd (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules. 6: 1510–1515. Zhang, Y.-H. P. and L. R. Lynd (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering. 88: 797–824. Zhang, Y.-H. P., M. E. Himmel and J. R. Mielenz (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances. 24:452-481. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40682 | - |
dc.description.abstract | Paenibacillus campinasensis BL11是由高溫高鹼的製漿漂前黑液中 (58°C, pH 9.83) 所分離出的菌種。本研究的黑液是由台灣紙業新營廠所收集而來,其成分包含大量的半纖維素、木質素、和部分細小纖維。BL11具有分泌多種多醣類水解酵素之能力。經由SDS-PAGE與zymogram活性測試得知,BL11具有分泌3種纖維素酵素之能力,其酵素分子量分別約為42 kDa、57 kDa和87 kDa。其中一種纖維素酵素之DNA序列在此研究中被選殖出並分析之。
由Paenibacillus campinasensis BL11所選殖 (clone)出的纖維素酵素基因 (PcBC56)乃利用質粒pBCKS(+)為載體,轉型至Escherichia coli (DH5α)中,並利用含有甲基羧基纖維素 (CMC)之固態培養基篩選後得到之。所選殖出的纖維素酵素基因是由1,473個核苷酸所組成,但缺少末端的DNA序列,因此PcBC56的末端是與pBCKS(+)上部份MCS融合後才得到一完整的ORF,經由轉錄 (transcription)及轉譯 (translation)可得到大小為56 kDa的纖維素酵素。分析結果顯示此纖維素酵素其N端胺基酸序列具有一長度為29個胺基酸的信息序列 (signal peptide),和纖維素酵素的胞外分泌有關。同時也具有一個屬於家族5的醣類水解酵素區 (glycosyl hydrolase domain; catalytic domain)和C端一個屬於家族3的碳水化合物結合區 (carbohydrate binding module)。 本研究為了利於纖維素酵素的純化,將選殖得到的纖維素酵素C端胺基酸序列接上His-tag,並在0.1 mM IPTG和28oC培養下,誘導酵素大量表現。誘導得到的纖維素酵素利用與Ni-NTA agarose的親和力加以純化,但是卻無法成功純化此纖維素酵素。另一方面,PcBC56b所表現出的纖維素酵素在zymography的分析中顯示出兩個不同纖維素分解活性的位置,分別是56 kDa和35 kDa。胞外纖維素酵素和胞內纖維素酵素前驅物 (precursor)之間的分子量大小差異,扣除信息胺基酸 (約3 kDa)後大約有18 kDa左右,會產生此一現象可能是因為蛋白質轉譯後修飾 (post-translational modification)的結果。因此或許纖維素酵素的C端因而被切斷,造成His-tag的喪失,無法以Ni-NTA agarose完成純化。 誘導後的粗纖維素酵素液最佳反應條件為70oC和pH 6,酵素活性可達170.97 IU/mg。相信在完成純化之後必會得到更高的酵素活性,在工業應用上也更具潛力。 | zh_TW |
dc.description.abstract | Paenibacillus campinasensis BL11 was isolated by screening bacterial strains from thermo-alkaline black liquor (58oC, pH 9.83). The black liquor was collected from Hsinying Paper Mill of Taiwan Pulp and Paper Company. The collected sample contained large amounts of hemicellulose, lignin and small fiber fragments. Strain BL11 could exhibit many kinds of polysaccharide hydrolases. Strain BL11 exhibited strong cellulase activity and possessed three different kinds of cellulases. According to the result of SDS-PAGE and zymogram the cellulases are 42 kDa, 57 kDa and 87 kDa in molecular mass, respectively. One of the cellulases has been cloned and analyzed.
The cellulase gene (PcBC56) was cloned in Escherichia coli (DH5α) with pBCKS(+). The cellulase-related plasmid, pBCCMC1, was isolated by screening a library of randomly cloned BL11 DNA fragments on carboxylmethylcellulase (CMC) indicator plates. The cloned BL11 cellulase gene is composed of 1,473 bp nucleotides that is a C-terminal-lost DNA sequence. PcBC56 was fused with 75 bp of MCS of pBCKS(+) and became a new ORF (PcBC56b) which encode a protein of 56 kDa. The N-terminal of the cellulase contains a deduced signal peptide of 29 amino acids in length and a glycosyl hydrolase domain (catalytic domain) in family 5. There is a carbohydrate binding module in family III at C-terminal of this. The cloned BL11 cellulase was fused with a His-tag at its C-terminal for purification by gene manipulation. The engineered BL11 cellulase was induced with 0.1 mM IPTG at 28oC in an E. coli host for overexpression. The induced cellulase was purified with Ni-NTA agarose by bio-affinity but without success. In the other hand, zymographic analysis of the PcBC56b gave two cellulase activities whose molecular weights were 56 kDa and 35 kDa. The apparent ca. 18 kDa different between extracellular cellulase and its precursor form minus the signal peptide (ca. 3 kDa) could be due to one of several post-translational modifications. The C-terminal segment of the cellulase might be removed so that the purification would be fail because of the loss of His-tag. The optimal temperature and pH of the induced crude cellulase were 70oC and pH 6. The induced crude cellulase activity was 170.97 IU/mg. It would be mush better after purification and have potential for further industrial application. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:55:48Z (GMT). No. of bitstreams: 1 ntu-97-R94625008-1.pdf: 1784988 bytes, checksum: b3881877f94eebc15158bab12ebe1d7a (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 審定書………………………………………………………………..…..... i
謝誌………………………………………………………………………… ii 摘要…………………………………………………………........................ iv Abstract…………………………………………………………………….. vi Index……………………………………………………………………….. viii Table index………………………………………………………………… xii Figure index………………………...………………………....................... xii I Introduction…………………….………………………………………...... 1 II Literature reviews………….…………………………………………….... 6 1. Characterization and structure of cellulose………………………………. 6 2. Cellulolytic enzymes…………………………………………………...... 7 3. Cellulase producing microorganisms……………………………………. 11 3.1 Bacteria………...…………………………………….......................... 11 3.2 Fungi……………………………………..…………………………... 17 4. Applications of cellulase………………………………………………..... 20 III Objective…………………………………………………………………… 24 IV Materials and methods……………………………………………………. 25 1. Bacterial strains…………………………………………........................ 25 2. Carboxymethylcellulose (CMC) hydrolase assay 2.1 Stain assay of polysaccharide hydrolases............................................. 26 2.2 SDS-PAGE and Zymography………………...…………………….... 27 2.3 DNSA (dinitrosalicylic acid) assay...……………………………….... 29 3. Preparation of molecular-cloning 3.1 Preparation of bacterial chromosomal DNA…………......................... 32 3.2 DNA electrophoresis.……………………..……………...................... 34 3.3 Preparation of competent cells…………………………...................... 35 3.4 Electroporation and transformation……………………...................... 36 3.5 Plasmid preparation……………………………………...................... 37 4. Molecular cloning of cellulase gene 4.1 Restriction enzyme digestion of DNA and recovery of chromosomal DNA…………………………………………………………………. 39 4.2 Restriction enzyme digestion, dephosphorylation and recovery of vector DNA…...................................................................................... 41 4.3 DNA ligation………………………………………..…....................... 42 4.4 Electroporation and transformation...................................................... 43 4.5 Replica and activity assay..................................................................... 43 4.6 Mapping, Sequencing, and Blasting..................................................... 44 5. Overexpression of cloned cellulose 5.1 Primer design and PCR program optimization………………………. 45 5.2 Cloning of PCR product in pXcmI vector and recovery of insert fragment…………………………………….……………………….. 45 5.3 Preparation of overexpression vector………………………………… 46 5.4 Ligation, electroporation, transformation and activity assay................ 47 5.5 Condition test of induction……………................................................ 48 6. Purification of cloned cellulase 6.1 Pretest of purification condition…………………................................ 50 6.2 Purification and activity assay…………………………...................... 52 V Results……………………………………………………............................ 54 1. Carboxymethylcellulose (CMC) hydrolase assay 1.1 Stain assay of Carboxymethylcellulose (CMC) hydrolase…………... 54 1.2 SDS-PAGE and zymogram of BL11 cellulase……………………..... 55 2. Molecular cloning of BL11 cellulase genes 2.1 Partial digestion and recovery of BL11 chromosomal DNA………... 55 2.2 Preparation of vector………………………………………………… 57 2.3 Ligation, transformation and clone selection……………………….. 58 2.4 Clone mapping, sequencing, and blasting………………………….... 59 2.5 Analysis of cloned BL11 cellulase………………………………… 65 2.6 SDS-PAGE and zymogram of cloned BL11 cellulase (pETCMC1)... 67 3. Overexpression of cloned cellulase 3.1 Primer set design of cellulase gene and optimal PCR program……… 68 3.2 TA cloning, restriction enzyme digestion, and fragment recovery…... 70 3.3 Restriction enzyme digestion and fragment recovery of pET25b….... 71 3.4 Ligation, electroporation, and transformation………………………... 71 3.5 Condition test of induction…………………………………………… 72 4. Purification of cloned BL11 cellulase 4.1 Pretest of purification condition……………………………………… 74 4.2 Purification of cloned BL11 cellulase……………………………… 75 4.3 DNSA assay of crude induced cloned BL11 cellulase activity……..... 76 VI Discussion and Conclusion………………………………………………... 78 VII References………………………………………………….………………. 91 Appendix…………………………………………………………………… 109 | |
dc.language.iso | en | |
dc.title | Paenibacillus campinasensis BL11纖維素酵素基因之分子選殖、大量表現與純化 | zh_TW |
dc.title | Molecular-cloning, overexpression and purification of the cellulase gene from Paenibacillus campinasensis BL11 | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 杜鎮(Jenn Tu),劉佳振(Chia-Chen Liu),王亞男,蕭英倫 | |
dc.subject.keyword | Paenibacillus campinasensis BL11,纖維素酵素,甲基羧基纖維素,選殖,大量表現,純化,轉譯後修飾, | zh_TW |
dc.subject.keyword | Paenibacillus campinasensis BL11,cellulase,carboxylmethylcellulase (CMC),clone,overexpression,purification,post-translational modification, | en |
dc.relation.page | 111 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。