Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40667
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐源泰
dc.contributor.authorChia-Lin Wuen
dc.contributor.author巫佳霖zh_TW
dc.date.accessioned2021-06-14T16:55:14Z-
dc.date.available2009-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation1.牛惠之、郭華仁、滕沛倫、彭英泰、陳詩欣. 2005. 基因改造生物的運用與功能. p.22-31. 基因改造產品–發展、爭議、管理與規範. 行政院農業委員會動植物防疫檢疫局. 台北市.
2.杜宜殷、黃鵬林. 2004. 植物基因轉殖在園藝上之應用. p.173-189. 植物基因轉殖之原理與應用. 植物生物技術教學資源中心. 台中市.
3.何湘泠. 2006. 野生型祕魯番茄L. peruvianum LA2157 之耐熱型抗線蟲基因之選殖及功能性分析研究. p.10-12. 國立台灣大學植物科學研究所碩士論文.
4.林天枝、洪澨堂. 2002. 番茄新品種台中亞蔬十號之育成. 台中區農業改良場研究彙報75: 41-57.
5.林信堂. 2006. 國內基因改造食品管理現況. p.1-42. 基因改造食品安全評估暨過敏性安全評估研討會論文集.
6.彭瑞菊、鄭安秀. 2003. 台南區番茄病毒病的種類及分佈. 台南區農業專訊 44: 15-18.
7.劉富文. 1994. 園產品採後生理. p.1-20. 園產品採後處理及儲藏技術. 台灣省青果運銷合作社.
8.潘子明. 2004. 食品生物技術簡介. p.1-45. 基因改造食品. 九州圖書文物有限公司. 台北市.
9.鄭隨和. 2000. 卡塔黑納生物安全議定書與國內相關規範簡介. p.39-46. 基因轉殖生物相關議題研討會論文集. 中國農業化學會.
10.蕭吉雄、黃維東、周明燕. 2002. 番茄品種特性與栽培技術全集. p.1-78. 行政院農業委員會種苗改良繁殖場. 台中縣.
11.羅致述、陳淑娟. 2005. 基改植物抗藥性基因移轉與安全評估. p.1-12. 行政院農業委員會農業藥物毒物試驗所技術專刊. 行政院農業委員會農業藥物毒物試驗所. 台中縣.
12.Alexander, L., and D. Grierson. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53: 2039-2055.
13.Ammann, K., Y. Jacot, and P. R. A. Mazyad. 2001. Safety of genetically engineered plants: an ecological risk assessment of vertical gene flow. p.60-87. In: Custers, R. (ed.) Safety of Genetically Engineered Crops. Flanders Interuniversity Institute for Biotechnology, Zwijnaarde, Belgium.
14.Barry, C. S., M. I. Llop-Tous, and D. Grierson. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition form system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123: 979-986.
15.Barry, C. S., and J. J. Giovannoni. 2007. Ethylene and fruit ripening. J. Plant Growth Regul. 26: 143-159.
16.Beachy, R. N., S. Loesch-Fries, and N. E. Tumer. 1990. Coat protein-mediated resistance against virus infection. Annu. Rev. Phytopathol. 28: 451-474.
17.Blum, A., M. Monir, I. Wirsansky, and S. Ben-Arzi. 2005. The beneficial effects of tomatoes. Eur. J. Intern. Med. 16:402-404.
18.Brummell, D. A. and M. H. Harpster. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47: 311-340.
19.Cellini, F., A. Chesson, I. Colquhoun, A. Constable, H. V. Davies, K. H. Engel, A. M. R. Gatehouse, S. K. Karenlampi, E. J. Kok, J. J. Leguay, S. Lehesranta, H. P. J. M. Noteborn, J. Pedersen, and M. Smoth. 2004. Unintended effects and their detection in genetically modified crops. Food Chem. Toxicol. 42: 1089-1125.
20.Chen, C. H., H. J. Lin, and T. Y. Feng. 1998. Plant protein of sweet pepper can dissociate harpin multimneric forms and intensify the harpin-mediated hypersensitive response. Physiol. Mol. Plant Pathol. 52: 139-149.
21.Chen, G., L. Alexander, and D. Grierson. 2004. Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant. J. Exp. Bot. 55: 1491-1497.
22.Corpillo, D., G. Gardini, A. M. Vaira, M. Basso, S. Aime, G. P. Accotto, and M. Fasano. 2004. Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: The case of a virus-resistant tomato. Proteomics. 4: 193-200.
23.Delannay, X., B. J. Lavallee, R. K. Prokch, R. L. Fuchs, S. R. Sims, J. T. Greenplate, P. G. Marrone, R. B. Dodson, J. J. Augustine, J. G. Layton, and D. A. Fischhoff. 1989. Field performance of transgenic tomato plants expressing the Bacillus Thuringiensis var. Kurstaki insect control protein. Bio/Technology 7: 1265-1269.
24.Fischhoff, D. A., K. S. Bowdish, F. J. Perlak, P. G. Marrone, S. M. McCormick, E. J. Niedermayer, E. J. Rochester, S. G. Rogers, and R. T. Fray. 1987. Insect tolerant transgenic tomato plants. Bio/Technology 5: 807-813.
25.Folmer, D. E. and J. Pedersen. 1993. Tomato. p.42-47. Safety Evaluation of Foods Derived by Modern Biotechnology: Concepts and Principles. Organisation for Economic Co-operation and Development, Paris, France.
26.Fraser, P. D., P. Bramley, and G. B. Seymour. 2001. Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening. Phytochemistry 58: 75-79.
27.Fuchs, M., R. Provvidenti, J. L. Slightom, D. Gonsalves. 1996. Evaluation of transgenic tomato plants expressing the coat protein gene of cucumber mosaic virus strain WL under field conditions. Plant Disease. 80: 270-275.
28.Gall, G., M. S. Dupont, F. A. Mellon, A. L. Davis, G. J. Collins, M. E. Verhoeyen, and I. J. Colquhoun. 2003. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agri. Food Chem. 51: 2438-2446.
29.Giovannoni, J., H. Yen, B. Shelton, S. Miller, J. Vrebalov, P. Kannan, D. Tieman, R. Hackett, D. Grierson, and H. Klee. 1999. Genetic mapping of ripening and ethylene-related loci in tomato. Theor. Appl. Genet. 98: 1005-1013.
30.Gisbert, C., A. M. Rus, M. C. Bolarin, J. M. Lopez-Coronado, I. Arrillage, C. Montesinos, M. Caro, R. Serrano, and V. Moreno. 2000. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physio. 123: 393-402.
31.Goldbach, R., E. Bucher, and M. Prins. 2003. Resistance mechanisms to plant viruses: an overview. Virus Res. 92: 207-212.
32.Good, X., J. A. Kellogg, W. Wagoner, D. Langhoff, W. Matsumura, and R. K. Bestwick. 1994. Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol. Biol. 26: 781-790.
33.Griffiths, A., S. Prestage, R. Linforth, J. Zhang, A. Taylor, and D. Grierson. 1999. Fruit-specific lipoxygenase suppression in antisense-transgenic tomatoes. Postharvest Biol. Technol. 17: 163-173.
34.Hasen, G., and M. S. Wright. 1999. Recent advances in the transformation of plants. Trends Plant Sci. 4: 226-231.
35.Hefferon, K. L., H. Khalilian, H. Xu, and M. G. AbouHaidar. 1997. Expression of the coat protein of potato virus X from a dicistronic mRNA in transgenic potato plants. J. Gen. Virol. 78: 3051-3059.
36.Heller, K. J. 2006. Genetically modified plants. p.27-55. Genetically Engineered Food: Methods and Detection. Wiley-VCH, Weinheim, Germany.
37.Herrera-Estrella, L. and J. Simpson. 1995. Genetically engineered resistance to bacterial and fungal pathogens. World J. Microbiol. Biotechnol. 11: 383-392.
38.Holst-Jensen, A., S. B. Rønning, A. Løvseth, and K. G. Berdal. 2003. PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal. Bioanal. Chem. 375: 985-993.
39.James, D. 2007. Global status of commercialized biotech/GM crops: 2007. International Service for the Acquisition of Agri-Biothech Applications (ISAAA).
40.Jani, D., L. S. Meena, Q. M.Rizwan-ul-Haq, Y. Singh, A. K. Sharma, and A. K. Tyagi. 2002. Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res, 11: 447-454.
41.Jaynes, J. M., P. Nagpala, L. Destefano-Beltran, J. H. Huang, J. H. Kim, T. Denny, and S. Cetiner. 1993. Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Sci. 89: 43-53.
42.Jong, W. W., Leunissen, J. A. M., Voorter, C. E. M. 1993. Evolution of the α-crystallin/ small heat shock protein family. Molecular Biology and Evolution. 10: 103-126.
43.Jongedijk, E., H. Tigelaar, J. S. C. van Roekel, S. A. Bres-Vloemans, I. Dekker, P. J. M. van den Elzen, B. J. C. Cornelissen, and L. S. Melchers. 1995. Synergistic activity of chitinase and beta-1,3-glucanase enhances fungal resistance in transgenic tomato plants. Euphytica. 85: 173-180.
44.Kays, S. J., and R. E. Paull. Secondary metabolic processes and products. p.240-560. Postharvest biology. Exon Press, Georgia, The United States.
45.Kinderlerer, J. 2001. Effects on non-target organisms of the release of genetically modified crops into the environment. p.88-107. In: Custers, R. (ed.) Safety of Genetically Engineered Crops. Flanders Interuniversity Institute for Biotechnology, Zwijnaarde, Belgium.
46.Klee, H. J., M. B. Hayford, K. A. Kretzmer, G. F. Barry, and G. M. Kishore. 1991. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell. 3: 1187-1193.
47.Knudsen, I. 2002. Food safety assessment strategies on genetically modified food crops. (http://www.transgen.de/pdf/diskurs/Knudsen_mitschrift.pdf).
48.König, A., A. Cockburn, R. W. R. Crevel, E. Debruyne, R. Grafstroem, U. Hammerling, I. Kimber, I. Kundsen, H. A. Kuiper, A. A. C. M. Peijnenburg, A. H. Penninks, M. Poulsen, M. Schauzu, and J. M. Wall. 2004. Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem. Toxicol. 42: 1047-1088.
49.Kosiyachinda, S., and R. E. Young. 1975. Ethylene production in relation to the initiation of respiratory climacteric in fruit. Plant and Cell Physiol. 16: 595-602.
50.Kunik, T., R. Salomon, D. Zamir, N. Navot, M. Zeidan, I. Michelson, Y. Gafni, and H. Czosnek. 1994. Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Bio/Technology 12: 500-504.
51.Lawrence, S.D., K. Cline, and G. A. Moore. 1997. Chromoplast development in ripening tomato fruit: identification of cDNAs for chromoplast-targeted proteins and characterization of a cDNA encoding a plastid-localized low-molecular-weight heat shock protein. Plant Mol. Biol. 33: 483-492.
52.Löw, D., K. Brändle, L. Nover, and C. Forreiter. 2000. Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperons in vivo. Palnta 211: 575-582.
53.Malik, M. K., J. P. Slovin, C. H. Hwang, and J. L. Zimmerman. 1999. Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased of decreased thermotolerance. Plant J. 20: 89-99.
54.Markoulatos, P., N. Siafakas, A. Papathoma, E. Nerantzis, B. Betzios, V. Dourtoglou, and M. Moncany. 2004. Qualitative and quantitative detection of protein and genetic traits in genetically modified food. Food Reviews International. 20: 275-296.
55.McGarvey, P. B., J. Hammond, M. M. Dienelt, D. C. Hooper, Z. F. Fu, B. Dietzschold, H. Koprowski, and F. H. Michaels. 1995. Expression of the rabies virus glycoprotein in transgenic tomatoes. Nat. Biochem. 13:1484-1487.
56.Moore, S., J. Vrebalov, P. Payton, and J. Giovannoni. 2002. Use of genomics tools to isolate key ripening genes and analyses fruit maturation in tomato. J. Exp. Bot. 53: 2023-2030.
57.Muir, S. R., G. J. Collins, S. Robinson, S. Hughes, A. Bovy, C. H. Ric de Vos, A. J. van Tunen, and M. E. Verhoeyen. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol. 19: 470-474.
58.Nakatsuka, A., S. Murachi, H. Okunishi, S. Shiomi, R. Nakano, Y. Kubo, and A. Inaba. 1998. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 118: 1295-1305.
59.Neta-Sharir, I., T. Isaacson, S. Lurie, and D. Weiss. 2005. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17: 1829-1838.
60.Nunome, T., F. Fukumoto, F. Terami, K. Hanada, and M. Hirai. 2002. Development of breeding materials of transgenic tomato plants with a truncated replicase gene of cucumber mosaic virus for resistance to the virus. Breeding Science. 52: 219-223.
61.Oeller, P. W., M. W. Lu, L. P. Taylor, D. A. Pike, and A. Theologis. 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science. 254: 437-439.
62.Pang, S. Z., F. J. Jan, D. M. Tricoli, P. F. Russell, K. J. Carney, J. S. Hu, M. Fuchs, H. D. Quemada, and D. Gonsalves. 2000. Resistance to squash mosaic comovirus in transgenic squash plants expressing its coat protein genes. Molecular Breeding. 6: 87-93.
63.Picton, S., J. Gray, S. Barton, U. AbuBakar, A. Lowe, and D. Grierson. 1993. cDNA cloning and characterisation of novel ripening-related mRNAs with altered patterns of accumulation in the ripening inhibitor (rin) tomato ripening mutant. Plant Mol. Biol. 23: 193-207.
64.Picton, S., S. Barton, S. L. Bouzayen, M. Hamilton, A. J. Grierson. 1993. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J. 3: 469-481.
65.Powell, A. P., R. S. Nelson, B. De, N. Hoffiman, S. G. Rogers, R. T. Fraley, and R. N. Beachy. 1986. Delay of disease development in transgenic plants that express the tobacoo mosaic virus coat protein gene. Science. 232: 738-743.
66.Punja, Z. K. 2001. Genetic engineering of plants to enhance resistance to fungal pathogens—a review of progress and future prospects. Can. J. Plant Pathol. 23: 216-235.
67.Ramakrishna, W., Z. Deng, C. K. Ding, A. K. Handa, and R. H. Ozminkowski Jr. 2003. A novel small heat shock protein gene, vis1, contributes to pectin depolymerization and juice viscosity in tomato fruit. Plant Physiol. 131: 725-735.
68.Rissler, J., and M. Mellon. 1996. p.168. The ecological risks of engineered crops. The MIT press Cambridge, Massachusettes, Lodon, England.
69.Romer, S. D., P. D. Fraser, J. W. Kiano, C. A. Shipton, N. Misawa, W. Schuch, and P. M. Bramley. 2000. Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol. 18: 666-669.
70.Ruebelt, M. C., M. Lipp, T. L. Reynolds, J. J. Schmuke, J. D. Astwood, D. Dellapenna, K. H. Engel, and K. D. Jany. 2006. Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 3. assessing unintended effects. J. Agric. Food Chem. 54: 2169-2177.
71.Saito, Y., T. Komari, C. Masutal, Y. Hayashi, T. Kumashiro, and Y. Takanami. 1991. Cucumber mosaic virus-tolerant transgenic tomato plants expressing a satellite RNA. Theor. Appl. Genet. 83: 679-683.
72.Sambrook, J. and D. V. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press, New York, U.S.A.
73.Sandhu, J. S., S. F. Krasnyanski, L. L. Domier, S. S. Korban, M. D. Osaadjan, and D. E. Buetow. 2000. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein. Transgenic Res. 9:127-135.
74.Saravanan, R. S. and J. K. C. Rose. 2004. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics. 4: 2522-2532.
75.Serrano, C., P. Arce-Johnson, H. Torres, M. Gebauer, M. Gutierrez, M. Moreno, X. Jordana, A. Venegas, J. Kalazich, and L. Holuigue. 2000. Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp. atroseptica. American Potato Journal. 77: 191-199.
76.Seymour, G. B., J. E. Taylor, and G. A. Tucker. 1993. Introduction. p. 1-43. Biochemistry of fruit ripening. Chapman & Hall, London, The United Kingdom.
77.Singh, O. V., S. Ghai, D. Paul, and R. K. Jain. 2006. Genetically modified crops: success, safety assessment, and public concern. Appl. Micorbio. Biothechnol. 71: 598-607.
78.Smith, C. J. S., C. F. Waston, J. Ray, C. R. Bird, P. C. Morris, W. Schuch, and D. Grierson. 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature. 334: 724-726.
79.Stepanova, A. N., and J. R. Ecker. 2000. Ethylene signaling: from mutants to molecules. Curr. Opin. Plant Biol. 3: 353-360.
80.Sun, W., M. V. Montagu, and N. Verbruggen. 2002. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta. 1577: 1-9.
81.Tabaeizadeh, Z., Z. Agharbanoui, H. Harrak, and V. Poysa. 1999. Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Rep. 19: 197-202.
82.Taiz, L., and E. Zeiger. 2002. Ethylene: the gaseous hormone. P. 519-536. In: Sinauer, A. D., and K. Emerson (eds.) Plant Physiology. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts.
83.Thomzik, J. E., K. Stenzel, R. Stogker, P. H. Sghreier, R. Hain, and D. J. Stahl. 1997. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 51: 265-278.
84.Tieman, D. M., M. G.. Taylor, J. A. Ciardi, and H. J. Klee. 2000. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc. Natl. Acad. Sci. U. S. A. 97: 5663-5668.
85.Twell, D., R. Wing, J. Yamaguchi, and S. McCormick. 1989. Isolation and expression of an anther-specific gene from tomato. Mol. Gen. Genet. 217: 240-245.
86.Vrebalov, J., D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano, R. Drake, W. Schuch, and J. Giovannoni. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening inhibitor (rin) locus. Science. 296: 343-346.
87.Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 218: 1-14.
88.Yang, Y., J. M. Ai-Khayri, and E. J. Anderson. 1997. Transgenic spinach plants expressing the coat protein of cucumber mosaic virus. In Vitro Cell. Dev. Biol., Plant. 33: 200-204.
89.Yang, L., A. Pan, J. Jia, J. Ding, J. Chen, H. Cheng, C. Zhang, and D. Zhang. 2005. Validation of a tomato-specific gene, LAT52, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic tomatoes. J. Agric. Food Chem. 53: 183-190.
90.Yang, L., H. Zhang, J. Guo, L. Pang, and D. Zhang. 2008. International collaborative study of the endogenous reference gene LAT52 used for qualitative and quantitative analysis of genetically modified tomato. J. Agric. Food Chem. 56: 3438-3443.
91.Zhang, X. H., D. J. Guo, L. M. Zhang, W. B. Li, and Y. R. Sun. 2000. The research on the expression of rabbit defensin (NP-1) gene in transgenic tomato. Acta Genetica Sinica. 27: 953-958.
92.Zhang, X. H. and E. Blumwald. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biochem. 19: 765-768.
93.http://www.agbios.com/dbase.php
94.行政院農業委員會農糧署–農情報告資訊(http://agr.afa.gov.tw/afa/afa_frame.jsp)
95.http://www.biodiv.org
96.行政院衛生署藥物食品檢驗局-基因改造食品網(http://gmo.doh.gov.tw/Web/life/main.shtml)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40667-
dc.description.abstract自1996年開始正式商業栽培基改作物起,引發全球消費者對基改作物與其衍生食品安全上之疑慮。基因改造作物之食品安全性評估主要採用「實質等同」(substantial equivalence)為基本原則,其以傳統食品為一般認定安全的(generally recognized as safe, GRAS)為出發點,將基改食品與傳統食品進行比較,若結果顯示無顯著之差異,則基改作物與其食品即可被視為安全的。故本試驗之目的為監測基因改造番茄於後熟過程中基因表達與其表現產物之可能變化,以確保安全性評估之完整性。以分子檢測之方式對基改番茄之DNA、RNA及蛋白質層面進行偵測。利用南方轉漬法與即時定量聚合酶鏈反應證實此基改番茄中轉入之胡瓜嵌紋病毒鞘蛋白基因於基因組中為單一拷貝數。再以即時定量聚合酶鏈反應分析基改與非基改番茄果實中七個與後熟相關基因之表現(RIN、ACS2、ACO4、NR、PSY1、sHSP21、vis1),以及分析不同後熟程度之基改番茄果實中胡瓜嵌紋病毒鞘蛋白基因表現情形,同一後熟程度下,基改與非基改番茄果實中此七個後熟相關基因之表現量無顯著之差異;而抗胡瓜嵌紋病毒之基改番茄中,鞘蛋白基因表現量亦不隨基改番茄果實後熟之進行而使其基因表現量有所改變。以西方轉漬法分析基改番茄果實中胡瓜嵌紋病毒鞘蛋白之累積,結果顯示,此基改番茄果實所累積之鞘蛋白非常微量,可能無法以現有之技術偵測,故以呈色之方式進行西方轉漬訊號之偵測測試,得其偵測極限為0.1 μg的胡瓜嵌紋病毒鞘蛋白,代表此基改番茄果實與葉片中胡瓜嵌紋病毒鞘蛋白之累積量低於總蛋白質的0.05%,此轉殖胡瓜嵌紋病毒鞘蛋白基因之基改番茄果實與葉片中無大量表現病毒之鞘蛋白;再將胡瓜嵌紋病毒鞘蛋白基因之表現量與不同後熟階段下之後熟相關基因表現量進行比較,證實鞘蛋白基因之表現量較其他七個後熟相關基因表現量低且達顯著性差異,故推測︰此基改番茄株具抗胡瓜嵌紋病毒病害之能力可能藉後轉錄基因靜默原理。目前利用二維電泳監測抗胡瓜嵌紋病毒之基改番茄與其母本番茄株,觀察兩者果實中總蛋白質之差異表現情形,兩者果實中總蛋白質之表現情形具差異性,可能因環境因素與人為操作上之誤差,以致兩者之蛋白質差異表現,故尚須利用西方轉漬法與質譜儀分析技術針對具差異性表現之蛋白質做進一步之身份確認。zh_TW
dc.description.abstractSince the commercialization of first transgenic crop in 1996, safety of genetically-modified crops and its related products become major concerns of consumer. Currently, environmental risk assessment brings by transgenic crops and food safety are the two main issues worldwide. To meet global regulatory authorities on the practice of substantial equivalence on transgenic food, which means that food derived from crops produced through biotechnology be as safe as food produced from conventionally bred crops, this study has investigated the variations of the gene expressions and protein accumulations in transgenic tomato fruits throughout the post-harvest and processing processes. We used Southern blotting and real-time PCR to verify single copy of CMV coat protein gene found within the genome of the transgenic tomato lines in this experiment. Comparison of seven ripening-related gene expressions between genetically modified (GM) and non-GM tomato fruits at different ripening stages by real-time quantitative PCR were also carried out. No significant differences were found in seven ripening-related gene expressions among GM and Non-GM tomato fruits at the same ripening stage. Furthermore, the expression of exogenous gene - CMV coat protein showed no significant changes in GM tomato fruit among different ripening stages. Detection of CMV coat protein among different ripening stages of transgenic tomato fruits is done by Western blotting. The CMV coat protein accumulations is extremely low in transgenic tomato fruits. The limitation of colorimetric detection was about 0.1 μg of purified CMV coat protein. We further compared with exogenous gene and ripening-related gene expressions among GM tomato fruits. The CMV coat protein gene transcripts were significantly lower than ripening-related gene transcripts. Therefore, it is presumed that post-transcriptional gene silencing mechanism may be the reason of anti-virus ability in transgenic tomato. Subsequently, two-dimensional electrophoresis was used to analysis the differential accumulations of total proteins among GM and Non-GM tomato fruits. The results indicated that there were some differential accumulations of proteins between GM and Non-GM tomato fruits. However the differential expression of proteins may be due to the environmental changes or experiment manipulation errors. Therefore, further study should focus on the properties of the differential proteins using western blotting or mass spectrometry.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:55:14Z (GMT). No. of bitstreams: 1
ntu-97-R95628204-1.pdf: 4213916 bytes, checksum: fdc3a9ddf2581d0da9e23466cfb28051 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書.........................................Ⅰ
謝辭.....................................................Ⅱ
中文摘要.................................................Ⅲ
英文摘要.................................................Ⅳ
目錄.....................................................Ⅴ
圖目錄...................................................Ⅷ
表目錄...................................................Ⅹ
第一章 前言...............................................1
第二章 前人研究...........................................2
第一節 園藝作物之採後生理變化.............................2
一、更年型與非更年型果實之介紹............................2
二、調控番茄果實後熟之相關基因表現........................3
(一) 乙烯生合成相關基因...................................3
(二) 小分子熱休克蛋白基因.................................5
(三) 茄紅素生合成相關基因.................................6
第二節 基因改造生物之概說................................13
一、什麼是基因改造生物...................................13
二、基因改造生物的運用與功能.............................14
三、基因改造作物之現況...................................16
四、基因改造食品安全性...................................17
五、各國基因改造產品規範.................................19
第三節 基因改造番茄之介紹................................35
一、番茄簡介.............................................35
二、不同特徵之基因改造番茄...............................36
(一) 延遲番茄果實後熟....................................36
(二) 具抗病蟲害能力之基改番茄............................38
(三) 具抗環境逆境之基改番茄..............................40
(四) 增加其營養價值之基改番茄............................42
第四節 基因轉殖植物之分子檢測技術........................45
一、以DNA為主之分子檢測技術 ..............................45
(一) 聚合酶鏈反應........................................45
(二) 南方轉漬分析........................................46
二、以mRNA為主之分子檢測技術.............................47
(一) 北方轉漬分析........................................47
三、以蛋白質為主之分子檢測技術...........................47
(一) 西方轉漬分析........................................48
(二) 二維膠體電泳........................................48
第三章 材料與方法........................................50
第一節 研究材料..........................................50
第二節 藥品..............................................50
第三節 儀器設備..........................................51
第四節 實驗方法..........................................52
一、以番茄DNA為主之分子檢測方式..........................52
(一) 基因改造與非基改之番茄果實DNA製備與純化.............52
(二) 南方轉漬分析........................................52
(三) 即時定量聚合酶鏈反應................................54
二、以番茄mRNA為主之分子檢測方式.........................55
(一) 收集番茄果實後熟相關之基因mRNA序列..................55
(二) 基因改造與非基改之番茄果實mRNA製備與純化............55
(三) 逆轉錄聚合酶連鎖反應................................56
(四) 即時定量聚合酶連鎖反應..............................56
三、以番茄蛋白質為主之分子檢測方式.......................57
(一) 基因改造與非基改番茄果實總蛋白質製備與純化..........57
(二) 重組嵌蛋白之大腸桿菌活化與表現......................57
(三) SDS-PAGE............................................58
(四) 西方轉漬分析........................................58
(五) 二維電泳分析........................................59
第四章 結果與討論........................................64
第一節 基因改造與非基改番茄之DNA分析.....................64
一、南方轉漬分析.........................................64
二、以即時定量聚合酶鏈反應確定轉入之鞘蛋白基因拷貝數.....65
(一) 定量標準曲線之建立..................................65
(二) 基改番茄果實中胡瓜嵌紋病毒鞘蛋白基因之拷貝數分析....66
第二節 基因改造與非基改番茄之mRNA分析....................74
一、以即時聚合酶鏈反應定量各後熟相關基因之表現...........74
(一) 以RIN-F/RIN-R引子對定量番茄後熟基因RIN表現..........74
(二) 以ACS2-F/ACS2-R引子對定量番茄後熟基因ACS2表現.......75
(三) 以ACO4-F/ACO4-R引子對定量番茄後熟基因ACO4表現.......75
(四) 以NR-F/NR-R引子對定量番茄後熟基因NR表現.............76
(五) 以PSY1-F/PSY1-R引子對定量番茄後熟基因PSY1表現.......76
(六) 以sHSP21-F/sHSP21-R引子對定量番茄後熟基因sHSP21表現.77
(七) 以vis1-F/vis1-R引子對定量番茄後熟基因vis1表現.......77
二、以即時聚合酶鏈反應定量胡瓜嵌紋病毒鞘蛋白基因之表現...78
(一) 以CPF/CPR引子對定量胡瓜嵌紋病毒鞘蛋白基因表現.......78
第三節 基因改造與非基改番茄之蛋白質分析..................100
一、以三種蛋白質萃取方式進行基因改造與非基改番茄之總蛋白質萃取...............................................100
二、以西方轉漬分析胡瓜嵌紋病毒鞘蛋白於基改番茄果實後熟過程中量之變化............................................100
三、以二維電泳分析基因改造與非基改番茄果實表現之總蛋白質差異性...............................................100
第五章 結論.............................................115
參考文獻................................................117
dc.language.isozh-TW
dc.subject西方轉漬分析zh_TW
dc.subject胡瓜嵌紋病毒zh_TW
dc.subject基因表現差異zh_TW
dc.subject基因改造番茄zh_TW
dc.subject採後生理變化zh_TW
dc.subject即時定量聚合&#37238zh_TW
dc.subject鏈反應zh_TW
dc.subjectreal-time PCRen
dc.subjectdifferential gene expressionen
dc.subjectwestern blottingen
dc.subjectcucumber mosaic virusen
dc.subjectpost-harvest physiology changeen
dc.subjectgenetically modified tomatoen
dc.title採後生理變化對抗胡瓜嵌紋病毒基改番茄之影響與安全性評估zh_TW
dc.titleEffect and safety assessment of the post-harvest physiology change of the genetically modified CMV-resistant tomatoen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳昭瑩,許輔,曾文聖
dc.subject.keyword胡瓜嵌紋病毒,基因表現差異,基因改造番茄,採後生理變化,即時定量聚合&#37238,鏈反應,西方轉漬分析,zh_TW
dc.subject.keywordcucumber mosaic virus,differential gene expression,genetically modified tomato,post-harvest physiology change,real-time PCR,western blotting,en
dc.relation.page124
dc.rights.note有償授權
dc.date.accepted2008-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved