請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40655完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃偉邦 | |
| dc.contributor.author | YUAN-HUI YANG | en |
| dc.contributor.author | 楊元蕙 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:54:48Z | - |
| dc.date.available | 2008-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | Alexandrov, K., Horiuchi, H., Steele-Mortimer, O., Seabra, M.C., and Zerial, M. (1994). Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. EMBO J 13, 5262-5273.
Ali, B.R., and Seabra, M.C. (2005). Targeting of Rab GTPases to cellular membranes. Biochem Soc Trans 33, 652-656. Audhya, A., Desai, A., and Oegema, K. (2007). A role for Rab5 in structuring the endoplasmic reticulum. J Cell Biol 178, 43-56. Azevedo, J.E., and Schliebs, W. (2006). Pex14p, more than just a docking protein. Biochim Biophys Acta 1763, 1574-1584. Baba, M., Osumi, M., Scott, S.V., Klionsky, D.J., and Ohsumi, Y. (1997). Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J Cell Biol 139, 1687-1695. Barrowman, J., Wang, W., Zhang, Y., and Ferro-Novick, S. (2003). The Yip1p.Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J Biol Chem 278, 19878-19884. Bernales, S., McDonald, K.L., and Walter, P. (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4, e423. Birmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T., and Brumell, J.H. (2006). Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281, 11374-11383. Bock, J.B., Matern, H.T., Peden, A.A., and Scheller, R.H. (2001). A genomic perspective on membrane compartment organization. Nature 409, 839-841. Brands, A., and Ho, T.H. (2002). Function of a plant stress-induced gene, HVA22. Synthetic enhancement screen with its yeast homolog reveals its role in vesicular traffic. Plant Physiol 130, 1121-1131. Bursch, W. (2004). Multiple cell death programs: Charon's lifts to Hades. FEMS Yeast Res 5, 101-110. Calero, M., Chen, C.Z., Zhu, W., Winand, N., Havas, K.A., Gilbert, P.M., Burd, C.G., and Collins, R.N. (2003). Dual prenylation is required for Rab protein localization and function. Mol Biol Cell 14, 1852-1867. Calero, M., and Collins, R.N. (2002). Saccharomyces cerevisiae Pra1p/Yip3p interacts with Yip1p and Rab proteins. Biochem Biophys Res Commun 290, 676-681. Calero, M., Whittaker, G.R., and Collins, R.N. (2001). Yop1p, the yeast homolog of the polyposis locus protein 1, interacts with Yip1p and negatively regulates cell growth. J Biol Chem 276, 12100-12112. Calero, M., Winand, N.J., and Collins, R.N. (2002). Identification of the novel proteins Yip4p and Yip5p as Rab GTPase interacting factors. FEBS Lett 515, 89-98. Casey, P.J., and Seabra, M.C. (1996). Protein prenyltransferases. J Biol Chem 271, 5289-5292. Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S., and Young, R.A. (2001). Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12, 323-337. Chang, C.Y., and Huang, W.P. (2007). Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Mol Biol Cell 18, 919-929. Cuervo, A.M. (2004). Autophagy: in sickness and in health. Trends Cell Biol 14, 70-77. De Craene, J.O., Coleman, J., Estrada de Martin, P., Pypaert, M., Anderson, S., Yates, J.R., 3rd, Ferro-Novick, S., and Novick, P. (2006). Rtn1p is involved in structuring the cortical endoplasmic reticulum. Mol Biol Cell 17, 3009-3020. Dirac-Svejstrup, A.B., Sumizawa, T., and Pfeffer, S.R. (1997). Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J 16, 465-472. Du, Y., Ferro-Novick, S., and Novick, P. (2004). Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci 117, 2871-2878. Dunn, W.A., Jr. (1990a). Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110, 1923-1933. Dunn, W.A., Jr. (1990b). Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol 110, 1935-1945. Dunn, W.A., Jr., Cregg, J.M., Kiel, J.A., van der Klei, I.J., Oku, M., Sakai, Y., Sibirny, A.A., Stasyk, O.V., and Veenhuis, M. (2005). Pexophagy: the selective autophagy of peroxisomes. Autophagy 1, 75-83. Geng, J., Shin, M.E., Gilbert, P.M., Collins, R.N., and Burd, C.G. (2005). Saccharomyces cerevisiae Rab-GDI displacement factor ortholog Yip3p forms distinct complexes with the Ypt1 Rab GTPase and the reticulon Rtn1p. Eukaryot Cell 4, 1166-1174. Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O'Shea, E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. Nature 425, 737-741. GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M. (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439-444. Gutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I., and Deretic, V. (2004). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753-766. Hamada, N., Iwahashi, J., Suzuki, K., Ogi, H., Kashiwagi, T., Hara, K., Toyoda, M., Yamada, T., and Toyoda, T. (2002). Molecular cloning and characterization of the mouse reticulon 3 cDNA. Cell Mol Biol (Noisy-le-grand) 48, 163-172. Hamasaki, M., Noda, T., Baba, M., and Ohsumi, Y. (2005). Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6, 56-65. Hamasaki, M., Noda, T., and Ohsumi, Y. (2003). The early secretory pathway contributes to autophagy in yeast. Cell Struct Funct 28, 49-54. Harding, T.M., Morano, K.A., Scott, S.V., and Klionsky, D.J. (1995). Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131, 591-602. He, C., Song, H., Yorimitsu, T., Monastyrska, I., Yen, W.L., Legakis, J.E., and Klionsky, D.J. (2006). Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175, 925-935. He, W., Lu, Y., Qahwash, I., Hu, X.Y., Chang, A., and Yan, R. (2004). Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. Nat Med 10, 959-965. Heidtman, M., Chen, C.Z., Collins, R.N., and Barlowe, C. (2003). A role for Yip1p in COPII vesicle biogenesis. J Cell Biol 163, 57-69. Heidtman, M., Chen, C.Z., Collins, R.N., and Barlowe, C. (2005). Yos1p is a novel subunit of the Yip1p-Yif1p complex and is required for transport between the endoplasmic reticulum and the Golgi complex. Mol Biol Cell 16, 1673-1683. Hsu, S.C., Hazuka, C.D., Roth, R., Foletti, D.L., Heuser, J., and Scheller, R.H. (1998). Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111-1122. Hsu, S.C., TerBush, D., Abraham, M., and Guo, W. (2004). The exocyst complex in polarized exocytosis. Int Rev Cytol 233, 243-265. Hu, J., Shibata, Y., Voss, C., Shemesh, T., Li, Z., Coughlin, M., Kozlov, M.M., Rapoport, T.A., and Prinz, W.A. (2008). Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319, 1247-1250. Huang, W.P., and Klionsky, D.J. (2002). Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct 27, 409-420. Huang, W.P., Scott, S.V., Kim, J., and Klionsky, D.J. (2000). The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem 275, 5845-5851. Hutchins, M.U., Veenhuis, M., and Klionsky, D.J. (1999). Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 112 ( Pt 22), 4079-4087. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., et al. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408, 488-492. Inadome, H., Noda, Y., Kamimura, Y., Adachi, H., and Yoda, K. (2007). Tvp38, Tvp23, Tvp18 and Tvp15: novel membrane proteins in the Tlg2-containing Golgi/endosome compartments of Saccharomyces cerevisiae. Exp Cell Res 313, 688-697. Ishihara, N., Hamasaki, M., Yokota, S., Suzuki, K., Kamada, Y., Kihara, A., Yoshimori, T., Noda, T., and Ohsumi, Y. (2001). Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12, 3690-3702. Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S., and Sakaki, Y. (2000). Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A 97, 1143-1147. Iwahashi, J., Hamada, N., and Watanabe, H. (2007). Two hydrophobic segments of the RTN1 family determine the ER localization and retention. Biochem Biophys Res Commun 355, 508-512. James, P., Halladay, J., and Craig, E.A. (1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425-1436. Jin, S. (2006). Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2, 80-84. Joslyn, G., Carlson, M., Thliveris, A., Albertsen, H., Gelbert, L., Samowitz, W., Groden, J., Stevens, J., Spirio, L., Robertson, M., et al. (1991). Identification of deletion mutations and three new genes at the familial polyposis locus. Cell 66, 601-613. Juhasz, G., and Neufeld, T.P. (2006). Autophagy: a forty-year search for a missing membrane source. PLoS Biol 4, e36. Kaiser, C.A., and Schekman, R. (1990). Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61, 723-733. Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150, 1507-1513. Kee, Y., Yoo, J.S., Hazuka, C.D., Peterson, K.E., Hsu, S.C., and Scheller, R.H. (1997). Subunit structure of the mammalian exocyst complex. Proc Natl Acad Sci U S A 94, 14438-14443. Khalfan, W.A., and Klionsky, D.J. (2002). Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr Opin Cell Biol 14, 468-475. Kim, J., Huang, W.P., and Klionsky, D.J. (2001). Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 152, 51-64. Kirisako, T., Baba, M., Ishihara, N., Miyazawa, K., Ohsumi, M., Yoshimori, T., Noda, T., and Ohsumi, Y. (1999). Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147, 435-446. Kirkegaard, K., Taylor, M.P., and Jackson, W.T. (2004). Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2, 301-314. Klionsky, D.J., Cregg, J.M., Dunn, W.A., Jr., Emr, S.D., Sakai, Y., Sandoval, I.V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., et al. (2003). A unified nomenclature for yeast autophagy-related genes. Dev Cell 5, 539-545. Klionsky, D.J., and Emr, S.D. (1989). Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8, 2241-2250. Klionsky, D.J., and Emr, S.D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721. Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036. Levine, B. (2005). Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159-162. Levine, B., and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463-477. Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961. Massey, A., Kiffin, R., and Cuervo, A.M. (2004). Pathophysiology of chaperone-mediated autophagy. Int J Biochem Cell Biol 36, 2420-2434. Meiling-Wesse, K., Barth, H., Voss, C., Eskelinen, E.L., Epple, U.D., and Thumm, M. (2004). Atg21 is required for effective recruitment of Atg8 to the preautophagosomal structure during the Cvt pathway. J Biol Chem 279, 37741-37750. Mijaljica, D., Prescott, M., and Devenish, R.J. (2006). Endoplasmic reticulum and Golgi complex: Contributions to, and turnover by, autophagy. Traffic 7, 1590-1595. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., and Ohsumi, Y. (2004). In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15, 1101-1111. Mori, K. (2000). Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451-454. Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., Nara, A., Funao, J., Nakata, M., Tsuda, K., et al. (2004). Autophagy defends cells against invading group A Streptococcus. Science 306, 1037-1040. Noda, T., Kim, J., Huang, W.P., Baba, M., Tokunaga, C., Ohsumi, Y., and Klionsky, D.J. (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148, 465-480. Noda, T., Matsuura, A., Wada, Y., and Ohsumi, Y. (1995). Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 210, 126-132. Noda, T., Suzuki, K., and Ohsumi, Y. (2002). Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol 12, 231-235. Oertle, T., Klinger, M., Stuermer, C.A., and Schwab, M.E. (2003a). A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J 17, 1238-1247. Oertle, T., and Schwab, M.E. (2003). Nogo and its paRTNers. Trends Cell Biol 13, 187-194. Oertle, T., van der Haar, M.E., Bandtlow, C.E., Robeva, A., Burfeind, P., Buss, A., Huber, A.B., Simonen, M., Schnell, L., Brosamle, C., et al. (2003b). Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci 23, 5393-5406. Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26, 9220-9231. Ogawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N., and Sasakawa, C. (2005). Escape of intracellular Shigella from autophagy. Science 307, 727-731. Ohsumi, Y., and Mizushima, N. (2004). Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 15, 231-236. Paludan, C., Schmid, D., Landthaler, M., Vockerodt, M., Kube, D., Tuschl, T., and Munz, C. (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593-596. Pereira-Leal, J.B., and Seabra, M.C. (2001). Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313, 889-901. Pfeffer, S., and Aivazian, D. (2004). Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 5, 886-896. Piper, R.C., Bryant, N.J., and Stevens, T.H. (1997). The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. J Cell Biol 138, 531-545. Preuss, D., Mulholland, J., Kaiser, C.A., Orlean, P., Albright, C., Rose, M.D., Robbins, P.W., and Botstein, D. (1991). Structure of the yeast endoplasmic reticulum: localization of ER proteins using immunofluorescence and immunoelectron microscopy. Yeast 7, 891-911. Prinz, W.A., Grzyb, L., Veenhuis, M., Kahana, J.A., Silver, P.A., and Rapoport, T.A. (2000). Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Biol 150, 461-474. Reggiori, F., and Klionsky, D.J. (2002). Autophagy in the eukaryotic cell. Eukaryot Cell 1, 11-21. Reggiori, F., Shintani, T., Nair, U., and Klionsky, D.J. (2005). Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1, 101-109. Reggiori, F., Wang, C.W., Nair, U., Shintani, T., Abeliovich, H., and Klionsky, D.J. (2004). Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. Mol Biol Cell 15, 2189-2204. Robinson, J.S., Klionsky, D.J., Banta, L.M., and Emr, S.D. (1988). Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8, 4936-4948. Sarkar, S., Perlstein, E.O., Imarisio, S., Pineau, S., Cordenier, A., Maglathlin, R.L., Webster, J.A., Lewis, T.A., O'Kane, C.J., Schreiber, S.L., et al. (2007). Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 3, 331-338. Schmelzle, T., and Hall, M.N. (2000). TOR, a central controller of cell growth. Cell 103, 253-262. Schroder, M., Chang, J.S., and Kaufman, R.J. (2000). The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast. Genes Dev 14, 2962-2975. Scott, S.V., Baba, M., Ohsumi, Y., and Klionsky, D.J. (1997). Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J Cell Biol 138, 37-44. Segev, N. (2001). Ypt/rab gtpases: regulators of protein trafficking. Sci STKE 2001, RE11. Senden, N.H., van de Velde, H.J., Broers, J.L., Timmer, E.D., Kuijpers, H.J., Roebroek, A.J., Van de Ven, W.J., and Ramaekers, F.C. (1994). Subcellular localization and supramolecular organization of neuroendocrine-specific protein B (NSP-B) in small cell lung cancer. Eur J Cell Biol 65, 341-353. Shen, Q., Chen, C.N., Brands, A., Pan, S.M., and Ho, T.H. (2001). The stress- and abscisic acid-induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol 45, 327-340. Shibata, Y., Voeltz, G.K., and Rapoport, T.A. (2006). Rough sheets and smooth tubules. Cell 126, 435-439. Shintani, T., Huang, W.P., Stromhaug, P.E., and Klionsky, D.J. (2002). Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3, 825-837. Shintani, T., and Klionsky, D.J. (2004a). Autophagy in health and disease: a double-edged sword. Science 306, 990-995. Shintani, T., and Klionsky, D.J. (2004b). Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 279, 29889-29894. Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27. Singh, S.B., Davis, A.S., Taylor, G.A., and Deretic, V. (2006). Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438-1441. Sivars, U., Aivazian, D., and Pfeffer, S.R. (2003). Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 425, 856-859. Staehelin, L.A. (1997). The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11, 1151-1165. Steiner, P., Kulangara, K., Sarria, J.C., Glauser, L., Regazzi, R., and Hirling, H. (2004). Reticulon 1-C/neuroendocrine-specific protein-C interacts with SNARE proteins. J Neurochem 89, 569-580. Stenmark, H., and Olkkonen, V.M. (2001). The Rab GTPase family. Genome Biol 2, REVIEWS3007. Stevens, T., Esmon, B., and Schekman, R. (1982). Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell 30, 439-448. Stromhaug, P.E., Reggiori, F., Guan, J., Wang, C.W., and Klionsky, D.J. (2004). Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 15, 3553-3566. Suzuki, K., Kirisako, T., Kamada, Y., Mizushima, N., Noda, T., and Ohsumi, Y. (2001). The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20, 5971-5981. Suzuki, K., Noda, T., and Ohsumi, Y. (2004). Interrelationships among Atg proteins during autophagy in Saccharomyces cerevisiae. Yeast 21, 1057-1065. Suzuki, K., and Ohsumi, Y. (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581, 2156-2161. Tagami, S., Eguchi, Y., Kinoshita, M., Takeda, M., and Tsujimoto, Y. (2000). A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene 19, 5736-5746. Talloczy, Z., Virgin, H.W.t., and Levine, B. (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2, 24-29. Terasaki, M., Chen, L.B., and Fujiwara, K. (1986). Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol 103, 1557-1568. TerBush, D.R., Maurice, T., Roth, D., and Novick, P. (1996). The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J 15, 6483-6494. Teter, S.A., and Klionsky, D.J. (2000). Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation. Semin Cell Dev Biol 11, 173-179. Touchot, N., Chardin, P., and Tavitian, A. (1987). Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci U S A 84, 8210-8214. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., et al. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623-627. Ulrich, H.D. (2002). Natural substrates of the proteasome and their recognition by the ubiquitin system. Curr Top Microbiol Immunol 268, 137-174. Voeltz, G.K., Prinz, W.A., Shibata, Y., Rist, J.M., and Rapoport, T.A. (2006). A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573-586. Voeltz, G.K., Rolls, M.M., and Rapoport, T.A. (2002). Structural organization of the endoplasmic reticulum. EMBO Rep 3, 944-950. Wang, C.W., and Klionsky, D.J. (2003). The molecular mechanism of autophagy. Mol Med 9, 65-76. Wang, Y.X., Catlett, N.L., and Weisman, L.S. (1998). Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J Cell Biol 140, 1063-1074. Wurmser, A.E., and Emr, S.D. (1998). Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J 17, 4930-4942. Yang, X., Matern, H.T., and Gallwitz, D. (1998). Specific binding to a novel and essential Golgi membrane protein (Yip1p) functionally links the transport GTPases Ypt1p and Ypt31p. EMBO J 17, 4954-4963. Yorimitsu, T., and Klionsky, D.J. (2005a). Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol Biol Cell 16, 1593-1605. Yorimitsu, T., and Klionsky, D.J. (2005b). Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2, 1542-1552. Yorimitsu, T., and Klionsky, D.J. (2007). Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 17, 279-285. Yuan, W., Tuttle, D.L., Shi, Y.J., Ralph, G.S., and Dunn, W.A., Jr. (1997). Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J Cell Sci 110 ( Pt 16), 1935-1945. Zimmerberg, J., and Kozlov, M.M. (2006). How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7, 9-19. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40655 | - |
| dc.description.abstract | 細胞自噬作用在真核細胞中扮演著經由液泡/溶酶體分解大分子物質的角色。當細胞處於養分缺乏的環境時,細胞自噬活性會被誘發。首先在細胞質中產生雙層膜的自噬體構造包覆細胞質中的大分子物質,甚至整個胞器,接著自噬體的外層膜與液泡/溶酶體進行融合後,將自噬體的內層膜與內容物分解成為胺基酸並送回細胞質予以細胞進行下一步的合成與利用。另外,酵母菌在養分充足的環境下,則會進行細胞質至液泡傳遞途徑,此為專一性的細胞自噬運送過程,主要負責液泡水解酵素前驅物的傳遞。
在真核生物中,Rab蛋白調控膜狀胞器間運輸小泡的傳遞。GDI蛋白(GDP dissociation inhibitor)可使Rab 分子游離至細胞質中而抑制其活性;GDF蛋白(GDI displacement factor)則可幫助Rab 分子與GDI分離而回到膜上執行功能。此外,膜狀胞器中尚有許多穿膜蛋白可與烯化的Rab 分子結合,其成員包括Yip1、 Yop1/Yip2、 Yip3、 Yip4、 Yip5和Yif1,統稱為Yip蛋白。Yip3已知位在高基氏體和內膜體,雖然可非專一性的與多種Rab 分子進行結合,但是只對內膜體的Rab 分子具有GDF的活性。Yop1則位在內質網上,近來研究指出,Yop1與Rtn1這一類穿膜蛋白參與調控高曲度的管狀內質網結構之生成與維持。 在本研究中發現,yip3突變細胞具有細胞自噬缺陷,並且在養分缺乏的環境下,細胞的存活率也略微下降;而單獨yop1基因突變則使細胞自噬活性稍微提高。推測Yip3與Yop1在細胞中可能經由調節Rab 分子的活性,進一步影響細胞自噬的進行。另外,細胞同時帶有rtn1及yop1突變基因時,其細胞自噬進行較慢,可能是因為內質網結構被破壞而影響運輸小泡的產生,進而抑制細胞自噬的進行。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:54:48Z (GMT). No. of bitstreams: 1 ntu-97-R95b41027-1.pdf: 3568781 bytes, checksum: 1fa17895899db593f775b88f0f4c25ce (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要................................................... i
Abstract.................................................. ii 致謝..................................................... iii 目錄...................................................... iv 壹、前言................................................... 1 一、細胞自噬概論.......................................... 1 二、選擇性的細胞自噬...................................... 3 三、Yip蛋白的概論..........................................4 四、內質網的型態與組成.....................................7 五、細胞自噬中雙層膜的來源................................10 貳、材料與方法.............................................12 一. 菌種、培養基與緩衝液 ( Strains, media and buffer)....12 二. 質體的構築(Plasmid constuctions)....................13 三.母菌雙雜交實驗(The yeast two-hybrid analysis)........14 四. 免疫轉漬分析法 (Immunoblot analysis)................15 五. ALP活性分析(Alkaline phosphatease(ALP)assay)......15 六. 細胞存活曲線(Survival curve)........................16 七. 螢光顯微鏡(Fluorescence microscopy).................16 八. 蛋白質共沈澱實驗(Protein A Pull-down experiment)....16 九. 流式細胞儀(Flow cytometry)..........................17 參、結果...................................................18 一、去除或大量表現Yop1不會使細胞生長或細胞型態發生改變....18 二、Yop1的表現量對細胞自噬途徑產生影響,但不影響細胞質至液泡 傳遞途徑..............................................19 三、酵母菌雙雜交實驗顯示Yop1蛋白可與Atg9蛋白進行結合......22 四、Yop1表現量的多寡不影響Atg9的分佈以及磷酸化............24 五、經過長時間飢餓處理可使得細胞自噬分解內質網............25 六、Yop1、Rtn1以及Yip3之間可能形成一複合體................27 七、yip3△突變菌株呈現細胞自噬缺陷,但不影響細胞質至液泡傳遞 途徑..................................................28 八. Yip3蛋白參與細胞自噬途徑..............................30 肆、討論...................................................32 伍、參考文獻...............................................38 陸、圖表...................................................51 | |
| dc.language.iso | zh-TW | |
| dc.subject | Yip蛋白 | zh_TW |
| dc.subject | Yip3 | zh_TW |
| dc.subject | Yop1 | zh_TW |
| dc.subject | 細胞自噬 | zh_TW |
| dc.subject | autophagy | en |
| dc.subject | Yop1 | en |
| dc.subject | Yip protein | en |
| dc.subject | Yip3 | en |
| dc.title | 分析Yip蛋白—Yop1及Yip3與細胞自噬的關係 | zh_TW |
| dc.title | Study of the involvement of Yip proteins, Yop1 and Yip3, in autophagy regulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李心予,陳俊宏 | |
| dc.subject.keyword | 細胞自噬,Yip蛋白,Yop1,Yip3, | zh_TW |
| dc.subject.keyword | autophagy,Yip protein,Yop1,Yip3, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
