請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40652完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳宗霖 | |
| dc.contributor.author | Hui-Ling Ting | en |
| dc.contributor.author | 丁惠玲 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:54:41Z | - |
| dc.date.available | 2011-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | [1] V. Prasad Kodali, Engineering Electromagnetic Compatibility- Principle, Measurements, Technology, and Computer Models, 2nd Ed., New York: IEEE Press, 2001
[2] M. J. Thelberg, E. L. Bronaugh, and J. D. M. Osburn, “GTEM to OATS radiated emissions correlation from 1-5GHz,” in Proc. IEEE Int. Symp. Electromagn. Compat., Chicago, IL, pp.387-392, Aug. 1994 [3] Jong-Hwa Kwon, Hyun Ho Park, Ae-Kyoung Lee, and Hyung-Do Choi, “Comparison of correlation algorithms between GTEM cell and semi anechoic chamber,” in Proc. IEEE Int. Symp. Electromagn. Compat., Minneapolis, MN, USA,vol.1, pp481-485, Aug. 2002 [4] R. Guirado, J. C. Molina, and J. Carpio, “Correction of radiated emission measurements made in a GTEM cell,” in Proc. IEEE Int. Symp. Electromagn. Compat. , vol.2, pp.888-892, Aug. 1998 [5] T. E. Harrington, “Total-radiated-power-based OATS-equivalent emissions testing in reverberation chambers and GTEM cells,” in Proc. IEEE Int. Symp. Electromagn. Compat. Washington, DC, pp.23-28, Aug.2000 [6] R. Guirado, R. del Rio, J. Carpio, F. Garnacho, A. Valladolid, and M. Valcarcel, “Comparison between GTEM and OATS radiated field emission measurements,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp.338-342, Aug. 1995 [7] M. Heidemann, H. Garbe, “Improvement of GTEM to OATS correlation,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol.2, pp. 909-914, Aug. 2000 [8] Soo-Hyung Kim, Jun-Young Nam, Hyun-Goo Jeon, and Sung-Kook Lee, “A correlation between the results of the radiated emission measurements in GTEM and OATS,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol.2, pp. 1105-1109, Aug. 1998 [9] H. P. Geromiller, J. Schrape, A. Kost, and P.U. Schwartz, “Measuring defined emissions in GTEM-cell 1250,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol.2, pp. 1110-1113, Aug. 1998 [10] M. Klingler, V. Deniau, S. Egot, B. Demoulin, and T. Sarkar, “Measuring radiation of small electronic equipment in three-dimensional TEM cells,” Elect. Perform. Electro. Packag., pp. 21-24, Oct. 2001 [11] R. Guirado, J. C. Molina, and J. Carpio, “Comparison between GTEM and OATS radiated emission measurements for different product families,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp. 555-560, Aug. 1997 [12] Yun Ji, K. P. Slattery, and H. G. Skinner, “Correlation of EMI measurements and simulations for simple package geometries,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol.1, pp. 419-423, Aug. 2002 [13] K. P. Slattery, “A comparison of the near field and far field emissions of a Pentium® clock IC,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol.1, pp.547-551, Aug. 2001 [14] J. D. Osburn, E. L. Bronaugh, “Advances in GTEM to OATS correlation models,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp.95-98, Aug. 1993 [15] D. Hansen, D. Ristau, T. Spaeth, W. A. Radasky, K. S. Smith, and J. L. Gilbert, “Analysis of the measured field structure in a GTEM 1750,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp.144-149, Aug. 1994 [16] T. E Harrington, “ GTEM fields FDTD modeling,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp.614-619, Aug. 1997 [17] S. Ishigami, K. Harima, and Y. Yamanaka, “Estimation of E-field distribution in a loaded GTEM cell,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol.1, pp.129-134, Aug. 2001 [18] D. Hansen, D. Ristau, T. Spaeth, W. A. Radasky, and K.S. Smith, “ Expansions on the GTEM field structure problem,” in Proc. IEEE Int. Symp. Electromagn. Compat., pp.538-542, Aug. 1995 [19] J. P. Karst, C. Groh, and H . Garbe, “Calculable field generation using TEM cells applied to the calibration of a novel E-field probe,” IEEE Trans. Electromagn. Compat., vol.44, no.1, pp.59-71, Feb. 2002 [20] Electromagnetic compatibility ( EMC)-Part 4: Test and measurement technique. Section 20 :Emission and immunity testing in transverse electromagnetic ( TEM ) waveguides , International Electrotechnical Commission. Geneva, Switzerland, IEC 61000-4-20,2003 [21] M. Yamada, M. Tokuda, S. Ishigami, K. Gotoh, and Y. Matsumoto, “Evaluation of Electromagnetic Interference Between UWB System and Wireless LAN Using a GTEM Cell,” in Proc. IEEE Int. Symp. Electromagn. Compat, pp.1-5, July 2007 [22] X. T. I Ngu, A. Nothofer, D. W. P. Thomas, and C. Christopoulos, “A Complete Model for Simulating Magnitude and Phase of Emissions from a DUT Placed Inside a GTEM Cell,” IEEE Trans. Electromagn. Compat., vol.49, no.2, pp.285-293, May 2007 [23] E. L. Bronaugh, J. D. M. Osburn, “ Radiated emissions test performance of the GHz TEM cell,” in Proc. IEEE Int. Symp. Electromag. Compat., pp.1-7,Aug. 1991 [24] R. De Leo, T. Rozzi, C. Svara, L. Zappelli, “Rigorous analysis of the GTEM cell,” IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, pp.488-500, March 1991 [25] S. Bentz, “Use of the TEM cell for compliance testing of emission and immunity, an IEC perspective,” in Proc. IEEE Int. Symp. Electromagn. Compat., Santa Clara, CA, pp. 43-47, Aug.1996 [26] C. Groh, J. P. Kaerst, M. Koch, and H. Garbe, “ TEM Waveguides for EMC measurements,” IEEE Trans. Electromagn. Compat., vol. 41, no. 4, pp.440-445, Nov.1999 [27] T. E. Harrington, and E.L. Bronaugh, “EUT directivity and other uncertainty considerations for GHz-range use of TEM waveguide,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol.1, pp. 117-122, Aug.2001 [28] P. Wilson, D. Hansen, and D. Koenigstein, “Simulating open area test site emission measurements based on data obtained in a novel broadband TEM cell,” IEEE National Symp. Electromagn. Compat. Denver, CO, pp. 171-177, May 1989 [29] P. Wilson, “On correlating TEM cell and OATS emission measurement,” IEEE Trans. Electromagn. Compat. vol.37, no.1, pp. 1-16, Feb. 1995 [30] D. Bozec, L.M McCormack, A.C. Marvin, A. Nothofer, and M.J. Alexander, “A good practice guide for the use of GTEM cells in EMC measurements according to IEC 61000-4-20.,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol.2, pp.660-665, Aug. 2004 [31] B. Kordi, J. Lo Vetri, G. Bridges, and I. Jeffrey, “Calibration methods for electric field probes and GTEM cells,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol.3, pp.908-912, Aug. 2004 [32] K. Malaric, A. Sarolic, V. Roje, J. Bartolic, and B. Modlic, “Measured distribution of electric field in GTEM-cell,” in Proc. IEEE Int. Symp. Electromagn. Compat, vol.1, pp.139-141, Aug.2001 [33] M. Klingler, S. Egot, J. P. Ghys, and J. Rioult, “On the use of three-dimensional TEM cells for total radiated power measurements,” in Proc. IEEE Int. Symp. Electromagn. Compat, vol.1, pp.123-128, Aug.2001 [34] C.A. Balanis, Antenna Theory-Analysis and Design, 2nd Edition, Chapter 14,John Wiley & Sons,Inc.,1997. [35] 鍾怡燕,利用共平面電磁能隙結構達成電源層雜訊抑制之特性分析與設計,國立台灣大學碩士論文,2007年6月 [36] J. S. Pak, H. Kim, J. Lee, and J. Kim, ”Modeling and measurement of radiated field emission from a power/ground plane cavity edge excited by a through-hole signal via based on balanced TLM and via coupling model, ”IEEE Trans. Adv.packag.,Vol.30, pp.73-85,February 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40652 | - |
| dc.description.abstract | 有鑑於國內一般從事電磁波干擾(Electromagnetic Interference)量測之試驗室試驗人員對半電波暗室之替代設備-Giga赫茲橫向電磁波傳輸室(GTEM Cell)之理論並不十分清楚,且對該設備使用及可量測範圍亦不熟悉;本文從該設備原理推導出發,並依據原理撰寫換算出遠場輻射電場值之應用程式,該程式可將從頻譜分析儀直接讀取得到之電壓數據換算為三米或十米處的電場值,模擬電波暗室及開放場量測,解決廠商開發軟體需透過通訊介面(GPIB)使用及有使用頻率限制等問題。
接著驗證該設備量測電磁干擾輻射理論之準確性,並由結果了解該設備可使用的頻段及適用之待測物。首先使用電磁模擬軟體HFSS模擬一兩層金屬板之待測物總輻射量,頻段由1GHz到6GHz,並與Giga赫茲橫向電磁波傳輸室量測換算所得之待測物總輻射量作比較,得到良好的相符性,了解Giga赫茲橫向電磁波傳輸室在頻率達6GHz時,尚可在誤差範圍內,測量到待測物總輻射量。第二部分使用標準待測物-梳型信號產生器(Comb Generator)作Giga赫茲橫向電磁波傳輸室、三米、十米半電波暗室數值比對,結果得到良好相關性。 最後待測物選用具有週期性電磁能隙結構的兩層金屬板,分析其對電磁波輻射的抑制效果;並在1GHz到10GHz的頻帶,作量測和模擬的比對,結果相差值較前一待測物(兩層金屬板)稍大,本篇論文也針對相差之原因作探討。雖然量測和模擬之間存在一些差異性,但兩數列仍在同一數量級範圍內。若以實驗室研究方便性之考量,仍可用Giga赫茲橫向電磁波傳輸室進行如電路板等待測物的電磁輻射量測,概略了解電路板的輻射情形,供研究修改階段之參考;如此,僅須於最後階段再到半電波暗室或開放場進行標準測試。 | zh_TW |
| dc.description.abstract | This thesis includes the theory derivation of the EMI measurement while using the GTEM Cell as a measuring apparatus and discusses the inaccuracy of the theory. Based on the theory we try to develop a novel program to solve the problems that are originated from the commercial program’s limit of the working frequency and measurement setup.
We validate this theory through the use of simulation software and semi-anechoic chambers (SAC). It’s not possible to validate algorithms along with voltage simulation while simulation of total radiated power on the contrary is a good way. Comparing the data, simulating from the total radiated power values is more direct and efficient than simulating the voltages according to the algorithm derivation. Besides it needs only a personal computer and lower memory requirement and save time. The validation results clearly show the performance for emission testing of the GTEM cell, especially in high frequency. Three different objects are used as the equipment under tests (EUT). The first EUT is a bare board. We compare the total radiated power values that obtained from GTEM cell and HFSS simulation with frequency ranging from 1GHz to 6GHz. The second EUT is a comb generator in both GTEM cell and 3m/10m chamber. We foresee the data from both tests should be corresponding because the comb generator radiates like a dipole. The results correspond with our anticipation. For the final test, a board with EBG structure is used as the EUT. We research the EMI performance with frequency ranging from 1 GHz to 10 GHz. We also make a comparison of total radiated power values that gained from GTEM Cell and Ansoft HFSS simulation. The result somewhat is not as ideal as the former two EUTs. But the difference is considered within a reasonable range. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:54:41Z (GMT). No. of bitstreams: 1 ntu-97-P95942005-1.pdf: 1739674 bytes, checksum: 5f5906228df10645bb2ed7b0bb7a8f25 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 III 圖表目錄 V 第一章 研究動機與簡介 1 1.1 研究動機…………………………………………… 1 1.2 文獻回顧 ………....................... 2 1.3 章節概要………………………………………… 3 1.4 貢獻…………………………………………………… 4 第二章 Giga赫茲橫向電磁波傳輸室量測電磁輻射之理論推導 6 2.1 Giga赫茲橫向電磁波傳輸室結構及設計理念……… 6 2.2 Giga赫茲橫向電磁波傳輸室量測電磁輻射之設備建構..9 2.3 Giga赫茲橫向電磁波傳輸室與三米及十米半電波暗室 (Semi-Anechoic Chamber)互相轉換之理論………………… 12 2.3.1 量測值換算待測物總輻射量…………………… 13 2.3.2 總輻射量推導遠場場值模型………………………… 19 2.3.3 理論推導之誤差探討………………………………… 20 2.3.4 與國際標準對照說明………………………………… 21 第三章 Giga赫茲橫向電磁波傳輸室轉換場值之應用程式 24 3.1 開發應用程式之必要性…………………………… 24 3.2 應用程式之撰寫架構流程 …………………………… 24 3.3 應用程式之執行結果論證 ………………………… 28 第四章 應用電磁模擬軟體驗證Giga赫茲橫向電磁波傳輸室量測結果 .............................................31 4.1 驗證方法觀念說明………………………………… 31 4.2 電磁應用軟體HFSS模擬待測物總輻射量…………… 32 4.2.1 模擬待測物輻射場情形…………………………… 32 4.2.2 模擬待測物總輻射量……………………………… 35 4.3 Giga赫茲橫向電磁波傳輸室量測值並換算輻射能量 36 4.3.1 Giga赫茲橫向電磁波傳輸室量測環境建構………… 36 4.3.2 連接同軸電纜的損耗補償並換算後之總輻射量…… 40 4.4 驗證結果探討……………………………............42 第五章 應用梳型信號產生器於不同試驗場地之量測值比對 44 5.1 梳型信號產生器介紹……………………………… 44 5.2 梳型信號產生器在Giga赫茲橫向電磁波傳輸室及三米、十米半電波暗室間量測值比對………………………………… 45 第六章 共平面式電磁能隙結構電路板輻射特性分析及量測 51 6.1 共平面式電磁能隙結構說明………………………… 51 6.2 共平面式電磁能隙結構電路板輻射特性模擬並說明…51 6.2.1 輻射場值與頻率之關係…………………………… 51 6.2.2 總輻射量與S參數間關係……………………………… 53 6.2.3 電磁輻射干擾與共平面式電磁能隙結構金屬板截止帶間關係….. ................................................54 6.3 使用Giga赫茲橫向電磁波傳輸室量測總輻射量之結果與模擬值比對並探討…………………………….............56 第七章 結論 .....................................59 參考文獻 .....................................60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 待測物總輻射量 | zh_TW |
| dc.subject | 電磁干擾 | zh_TW |
| dc.subject | 橫向電磁波傳輸室 | zh_TW |
| dc.subject | total radiated power | en |
| dc.subject | GTEM | en |
| dc.subject | EMI | en |
| dc.subject | semi-anechoic chambers | en |
| dc.title | Giga赫茲橫向電磁波傳輸室應用在電磁干擾量測之研究 | zh_TW |
| dc.title | EMI Measurement Technique Investigation Using Gigahertz Transverse Electromagnetic Cell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林漢年,邱政男,薛光華 | |
| dc.subject.keyword | 電磁干擾,橫向電磁波傳輸室,待測物總輻射量, | zh_TW |
| dc.subject.keyword | EMI,GTEM,semi-anechoic chambers,total radiated power, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
