請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40628
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂紹俊 | |
dc.contributor.author | Yau-Hung Lee | en |
dc.contributor.author | 李曜宏 | zh_TW |
dc.date.accessioned | 2021-06-14T16:53:50Z | - |
dc.date.available | 2009-08-13 | |
dc.date.copyright | 2008-08-13 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-30 | |
dc.identifier.citation | 高振壹(2007)PI3K/AKT/mTOR訊息傳遞路徑在脂多醣誘導巨噬細胞表現G-CSF中所扮演的角色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文
Ahmad, I., Hoessli, D.C., Walker-Nasir, E., Rafik, S.M., Shakoori, A.R., and Nasir ud, D. (2006). Oct-2 DNA binding transcription factor: functional consequences of phosphorylation and glycosylation. Nucleic Acids Res 34, 175-184. Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511. Andersen, B., and Rosenfeld, M.G. (1994). Pit-1 determines cell types during development of the anterior pituitary gland. A model for transcriptional regulation of cell phenotypes in mammalian organogenesis. J Biol Chem 269, 29335-29338. Arpinati, M., Green, C.L., Heimfeld, S., Heuser, J.E., and Anasetti, C. (2000). Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95, 2484-2490. Avalos, B.R. (1996). Molecular analysis of the granulocyte colony-stimulating factor receptor. Blood 88, 761-777. Berg, T., Didon, L., Barton, J., Andersson, O., and Nord, M. (2005). Glucocorticoids increase C/EBPbeta activity in the lung epithelium via phosphorylation. Biochem Biophys Res Commun 334, 638-645. Boneberg, E.M., Hareng, L., Gantner, F., Wendel, A., and Hartung, T. (2000). Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood 95, 270-276. Bronchud, M.H., Scarffe, J.H., Thatcher, N., Crowther, D., Souza, L.M., Alton, N.K., Testa, N.G., and Dexter, T.M. (1987). Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer 56, 809-813. Buck, M., Poli, V., Hunter, T., and Chojkier, M. (2001). C/EBPbeta phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol Cell 8, 807-816. Chang, F., Steelman, L.S., Lee, J.T., Shelton, J.G., Navolanic, P.M., Blalock, W.L., Franklin, R.A., and McCubrey, J.A. (2003). Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17, 1263-1293. Chano, F., and Descoteaux, A. (2002). Modulation of lipopolysaccharide-induced NF-IL6 activation by protein kinase C-alpha in a mouse macrophage cell line. Eur J Immunol 32, 2897-2904. Corcoran, L.M., Koentgen, F., Dietrich, W., Veale, M., and Humbert, P.O. (2004). All known in vivo functions of the Oct-2 transcription factor require the C-terminal protein domain. J Immunol 172, 2962-2969. Corey, S.J., Dombrosky-Ferlan, P.M., Zuo, S., Krohn, E., Donnenberg, A.D., Zorich, P., Romero, G., Takata, M., and Kurosaki, T. (1998). Requirement of Src kinase Lyn for induction of DNA synthesis by granulocyte colony-stimulating factor. J Biol Chem 273, 3230-3235. Croker, B.A., Metcalf, D., Robb, L., Wei, W., Mifsud, S., DiRago, L., Cluse, L.A., Sutherland, K.D., Hartley, L., Williams, E., et al. (2004). SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20, 153-165. Dale, D.C., Bonilla, M.A., Davis, M.W., Nakanishi, A.M., Hammond, W.P., Kurtzberg, J., Wang, W., Jakubowski, A., Winton, E., Lalezari, P., et al. (1993). A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 81, 2496-2502. Deans, Z., Dawson, S.J., Buttery, L., Polak, J.M., Wallace, D., and Latchman, D.S. (1995). Direct evidence that the POU family transcription factor Oct-2 represses the cellular tyrosine hydroxylase gene in neuronal cells. J Mol Neurosci 6, 159-167. Demetri, G.D., and Griffin, J.D. (1991). Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791-2808. Desai, C., Garriga, G., McIntire, S.L., and Horvitz, H.R. (1988). A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336, 638-646. Dong, B., and Zhao, F.Q. (2007). Expression of the Oct-2 transcription factor in mouse mammary gland and cloning and characterization of a novel Oct-2 isoform. Cell Tissue Res 328, 595-606. Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R., and Greenberg, M.E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661-665. Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479. Dunn, T.L., Ross, I.L., and Hume, D.A. (1996). Transcription factor Oct-2 is expressed in primary murine macrophages. Blood 88, 4072. Ernst, T.J., Ritchie, A.R., Demetri, G.D., and Griffin, J.D. (1989). Regulation of granulocyte- and monocyte-colony stimulating factor mRNA levels in human blood monocytes is mediated primarily at a post-transcriptional level. J Biol Chem 264, 5700-5703. Falkenburg, J.H., Harrington, M.A., de Paus, R.A., Walsh, W.K., Daub, R., Landegent, J.E., and Broxmeyer, H.E. (1991). Differential transcriptional and posttranscriptional regulation of gene expression of the colony-stimulating factors by interleukin-1 and fetal bovine serum in murine fibroblasts. Blood 78, 658-665. Finney, M., Ruvkun, G., and Horvitz, H.R. (1988). The C. elegans cell lineage and differentiation gene unc-86 encodes a protein with a homeodomain and extended similarity to transcription factors. Cell 55, 757-769. Gstaiger, M., Knoepfel, L., Georgiev, O., Schaffner, W., and Hovens, C.M. (1995). A B-cell coactivator of octamer-binding transcription factors. Nature 373, 360-362. Guha, M., O'Connell, M.A., Pawlinski, R., Hollis, A., McGovern, P., Yan, S.F., Stern, D., and Mackman, N. (2001). Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98, 1429-1439. Hareng, L., and Hartung, T. (2002). Induction and regulation of endogenous granulocyte colony-stimulating factor formation. Biol Chem 383, 1501-1517. Hareng, L., Meergans, T., von Aulock, S., Volk, H.D., and Hartung, T. (2003). Cyclic AMP increases endogenous granulocyte colony-stimulating factor formation in monocytes and THP-1 macrophages despite attenuated TNF-alpha formation. Eur J Immunol 33, 2287-2296. He, X., Treacy, M.N., Simmons, D.M., Ingraham, H.A., Swanson, L.W., and Rosenfeld, M.G. (1989). Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 340, 35-41. Herr, W., Sturm, R.A., Clerc, R.G., Corcoran, L.M., Baltimore, D., Sharp, P.A., Ingraham, H.A., Rosenfeld, M.G., Finney, M., Ruvkun, G., et al. (1988). The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev 2, 1513-1516. Hinkley, C., and Perry, M. (1992). Histone H2B gene transcription during Xenopus early development requires functional cooperation between proteins bound to the CCAAT and octamer motifs. Mol Cell Biol 12, 4400-4411. Humbert, P.O., and Corcoran, L.M. (1997). oct-2 gene disruption eliminates the peritoneal B-1 lymphocyte lineage and attenuates B-2 cell maturation and function. J Immunol 159, 5273-5284. Irandoust, M.I., Aarts, L.H., Roovers, O., Gits, J., Erkeland, S.J., and Touw, I.P. (2007). Suppressor of cytokine signaling 3 controls lysosomal routing of G-CSF receptor. EMBO J 26, 1782-1793. Kamio, N., Akifusa, S., Yamaguchi, N., and Yamashita, Y. (2008). Induction of granulocyte colony-stimulating factor by globular adiponectin via the MEK-ERK pathway. Mol Cell Endocrinol. [Epub ahead of print] Kang, S.M., Tsang, W., Doll, S., Scherle, P., Ko, H.S., Tran, A.C., Lenardo, M.J., and Staudt, L.M. (1992). Induction of the POU domain transcription factor Oct-2 during T-cell activation by cognate antigen. Mol Cell Biol 12, 3149-3154. Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621-663. Kawakami, M., Tsutsumi, H., Kumakawa, T., Abe, H., Hirai, M., Kurosawa, S., Mori, M., and Fukushima, M. (1990). Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76, 1962-1964. Kiehntopf, M., Herrmann, F., and Brach, M.A. (1995). Functional NF-IL6/CCAAT enhancer-binding protein is required for tumor necrosis factor alpha-inducible expression of the granulocyte colony-stimulating factor (CSF), but not the granulocyte/macrophage CSF or interleukin 6 gene in human fibroblasts. J Exp Med 181, 793-798. Konig, H., Pfisterer, P., Corcoran, L.M., and Wirth, T. (1995). Identification of CD36 as the first gene dependent on the B-cell differentiation factor Oct-2. Genes Dev 9, 1598-1607. Lee, C.K., Raz, R., Gimeno, R., Gertner, R., Wistinghausen, B., Takeshita, K., DePinho, R.A., and Levy, D.E. (2002). STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17, 63-72. Lee, F.S., Peters, R.T., Dang, L.C., and Maniatis, T. (1998). MEKK1 activates both IkappaB kinase alpha and IkappaB kinase beta. Proc Natl Acad Sci U S A 95, 9319-9324. Liew, F.Y., Xu, D., Brint, E.K., and O'Neill, L.A. (2005). Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 5, 446-458. Lillycrop, K.A., and Latchman, D.S. (1992). Alternative splicing of the Oct-2 transcription factor RNA is differentially regulated in neuronal cells and B cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. J Biol Chem 267, 24960-24965. Lord, B.I., Bronchud, M.H., Owens, S., Chang, J., Howell, A., Souza, L., and Dexter, T.M. (1989). The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci U S A 86, 9499-9503. Lord, B.I., Molineux, G., Pojda, Z., Souza, L.M., Mermod, J.J., and Dexter, T.M. (1991). Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo. Blood 77, 2154-2159. Lu, S.C., Chang, S.F., Chen, H.L., Chou, Y.Y., Lan, Y.H., Chuang, C.Y., Yu, W.H., and Chen, C.L. (2007). A novel role for Oct-2 in the lipopolysaccharide-mediated induction of resistin gene expression in RAW264.7 cells. Biochem J 402, 387-395. Marcinkowska, E., Garay, E., Gocek, E., Chrobak, A., Wang, X., and Studzinski, G.P. (2006). Regulation of C/EBPbeta isoforms by MAPK pathways in HL60 cells induced to differentiate by 1,25-dihydroxyvitamin D3. Exp Cell Res 312, 2054-2065. Metz, R., and Ziff, E. (1991). cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to trans-locate to the nucleus and induce c-fos transcription. Genes Dev 5, 1754-1766. Miller, S.I., Ernst, R.K., and Bader, M.W. (2005). LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3, 36-46. Morstyn, G., Campbell, L., Souza, L.M., Alton, N.K., Keech, J., Green, M., Sheridan, W., Metcalf, D., and Fox, R. (1988). Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet 1, 667-672. Mueller, M.M., and Fusenig, N.E. (1999). Constitutive expression of G-CSF and GM-CSF in human skin carcinoma cells with functional consequence for tumor progression. Int J Cancer 83, 780-789. Nakajima, T., Kinoshita, S., Sasagawa, T., Sasaki, K., Naruto, M., Kishimoto, T., and Akira, S. (1993). Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc Natl Acad Sci U S A 90, 2207-2211. Nelson, P.G. (1988). Early Behavioral Plasticity: Perinatal Development. Science 240, 1351-1352. Nemoto, S., DiDonato, J.A., and Lin, A. (1998). Coordinate regulation of IkappaB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-kappaB-inducing kinase. Mol Cell Biol 18, 7336-7343. Nicola, N.A., Metcalf, D., Johnson, G.R., and Burgess, A.W. (1979). Separation of functionally distinct human granulocyte-macrophage colony-stimulating factors. Blood 54, 614-627. Nicola, N.A., Metcalf, D., Matsumoto, M., and Johnson, G.R. (1983). Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. J Biol Chem 258, 9017-9023. Nishizawa, M., and Nagata, S. (1990). Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages. Mol Cell Biol 10, 2002-2011. Nishizawa, M., Tsuchiya, M., Watanabe-Fukunaga, R., and Nagata, S. (1990). Multiple elements in the promoter of granulocyte colony-stimulating factor gene regulate its constitutive expression in human carcinoma cells. J Biol Chem 265, 5897-5902. Panopoulos, A.D., and Watowich, S.S. (2008). Granulocyte colony-stimulating factor: Molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine. 42, 277-288 Panopoulos, A.D., Zhang, L., Snow, J.W., Jones, D.M., Smith, A.M., El Kasmi, K.C., Liu, F., Goldsmith, M.A., Link, D.C., Murray, P.J., et al. (2006). STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood 108, 3682-3690. Paust, S., and Cantor, H. (2005). Regulatory T cells and autoimmune disease. Immunol Rev 204, 195-207. Pevzner, V., Kraft, R., Kostka, S., and Lipp, M. (2000). Phosphorylation of Oct-2 at sites located in the POU domain induces differential down-regulation of Oct-2 DNA-binding ability. Biochem J 347 Pt 1, 29-35. Platzbecker, U., Prange-Krex, G., Bornhauser, M., Koch, R., Soucek, S., Aikele, P., Haack, A., Haag, C., Schuler, U., Berndt, A., et al. (2001). Spleen enlargement in healthy donors during G-CSF mobilization of PBPCs. Transfusion 41, 184-189. Price, T.H., Bowden, R.A., Boeckh, M., Bux, J., Nelson, K., Liles, W.C., and Dale, D.C. (2000). Phase I/II trial of neutrophil transfusions from donors stimulated with G-CSF and dexamethasone for treatment of patients with infections in hematopoietic stem cell transplantation. Blood 95, 3302-3309. Root, R.K., and Dale, D.C. (1999). Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: comparisons and potential for use in the treatment of infections in nonneutropenic patients. J Infect Dis 179 Suppl 2, S342-352. Rutella, S., Pierelli, L., Bonanno, G., Sica, S., Ameglio, F., Capoluongo, E., Mariotti, A., Scambia, G., d'Onofrio, G., and Leone, G. (2002). Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells. Blood 100, 2562-2571. Rutella, S., Zavala, F., Danese, S., Kared, H., and Leone, G. (2005). Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol 175, 7085-7091. Saito, M., Kiyokawa, N., Taguchi, T., Suzuki, K., Sekino, T., Mimori, K., Suzuki, T., Nakajima, H., Katagiri, Y.U., Fujimura, J., et al. (2002). Granulocyte colony-stimulating factor directly affects human monocytes and modulates cytokine secretion. Exp Hematol 30, 1115-1123. Schabitz, W.R., Kollmar, R., Schwaninger, M., Juettler, E., Bardutzky, J., Scholzke, M.N., Sommer, C., and Schwab, S. (2003). Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34, 745-751. Schneider, A., Kruger, C., Steigleder, T., Weber, D., Pitzer, C., Laage, R., Aronowski, J., Maurer, M.H., Gassler, N., Mier, W., et al. (2005). The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115, 2083-2098. Segil, N., Roberts, S.B., and Heintz, N. (1991). Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science 254, 1814-1816. Shaul, Y.D., and Seger, R. (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773, 1213-1226. Shaw, G., and Kamen, R. (1986). A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659-667. Sheridan, W.P., Begley, C.G., Juttner, C.A., Szer, J., To, L.B., Maher, D., McGrath, K.M., Morstyn, G., and Fox, R.M. (1992). Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339, 640-644. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., and Kimoto, M. (1999). MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189, 1777-1782. Shore, P., Dietrich, W., and Corcoran, L.M. (2002). Oct-2 regulates CD36 gene expression via a consensus octamer, which excludes the co-activator OBF-1. Nucleic Acids Res 30, 1767-1773. Six, I., Gasan, G., Mura, E., and Bordet, R. (2003). Beneficial effect of pharmacological mobilization of bone marrow in experimental cerebral ischemia. Eur J Pharmacol 458, 327-328. Stark, M.A., Huo, Y., Burcin, T.L., Morris, M.A., Olson, T.S., and Ley, K. (2005). Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285-294. Staudt, L.M., Singh, H., Sen, R., Wirth, T., Sharp, P.A., and Baltimore, D. (1986). A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature 323, 640-643. Strubin, M., Newell, J.W., and Matthias, P. (1995). OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell 80, 497-506. Sturm, R.A., Das, G., and Herr, W. (1988). The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes Dev 2, 1582-1599. Takano, H., Ueda, K., Hasegawa, H., and Komuro, I. (2007). G-CSF therapy for acute myocardial infarction. Trends Pharmacol Sci 28, 512-517. Takatsuka, H., Takemoto, Y., Mori, A., Okamoto, T., Kanamaru, A., and Kakishita, E. (2002). Common features in the onset of ARDS after administration of granulocyte colony-stimulating factor. Chest 121, 1716-1720. Tanaka, M., and Herr, W. (1990). Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60, 375-386. Tapley, P., Shevde, N.K., Schweitzer, P.A., Gallina, M., Christianson, S.W., Lin, I.L., Stein, R.B., Shultz, L.D., Rosen, J., and Lamb, P. (1997). Increased G-CSF responsiveness of bone marrow cells from hematopoietic cell phosphatase deficient viable motheaten mice. Exp Hematol 25, 122-131. Watari, K., Asano, S., Shirafuji, N., Kodo, H., Ozawa, K., Takaku, F., and Kamachi, S. (1989). Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 73, 117-122. Wirth, T., Priess, A., Annweiler, A., Zwilling, S., and Oeler, B. (1991). Multiple Oct2 isoforms are generated by alternative splicing. Nucleic Acids Res 19, 43-51. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., and Mathison, J.C. (1990). CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-1433. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40628 | - |
dc.description.abstract | 顆粒性白血球群落性促進因子(Granulocyte-colony simulating factor,G-CSF)為一19kD的醣蛋白,其具有促進嗜中性球以及巨噬細胞分化增生的能力,並且能促使嗜中性球的前驅細胞自骨髓移動進周邊血液循環,往發炎患處聚集以吞噬病原體。當人體接受到細菌的LPS,或是因發炎所大量產生的細胞激素如TNF-α及IL-1等因子刺激時,會使血液中的G-CSF濃度大幅增加,以促進身體對感染做出必要的免疫反應。除了對血球增生及分化作用有正向影響之外,近年來G-CSF亦被發現具有更多樣化的生理功能如:保護神經、促使骨髓幹細胞進入血液循環、降低移植體對抗宿主疾病(GVHD)等等,都相當具有其生理上的應用價值。但目前的研究卻尚未清楚闡明G-CSF在巨噬細胞中被活化的機制為何,因此這個研究主要是探討在巨噬細胞內的MEK/ERK訊息傳遞路徑如何調控G-CSF之表現。
當以U0126抑制MEK1/2活性而阻斷LPS所活化的MEK/ERK訊息傳遞路徑時,發現LPS所引發的G-CSF表現量顯著地下降下來。在G-CSF的啟動子上有兩段已被發現對其活性相當重要的序列:CSF-box及octamer,根據過去研究及本實驗室未發表的實驗結果,此兩段序列分別由NF-κB以及Oct-2所結合;於是我們推測MEK/ERK訊息傳遞路徑的下游可能透過NF-κB及Oct-2來調控G-CSF表現。Luciferase reporter assay實驗結果顯示,CSF-box及octamer兩段序列對LPS活化G-CSF啟動子是缺一不可的,且U0126會抑制此兩段序列對G-CSF啟動子之正向調控。然而藉由西方墨點法及reporter assay卻發現U0126不影響NF-κB的transactivity,而EMSA及西方墨點法實驗結果也顯示,U0126同樣不影響Oct-2之表現量以及在in vitro條件下對G-CSF啟動子之結合;但另一方面透過chromatin immunoprecipitation(ChIP)assay卻顯示出在in vivo中LPS的確會促進Oct-2結合上G-CSF啟動子,且U0126會顯著地將此結合現象抑制下來。 透過這些結果,我們認為MEK/ERK pathway的確參與LPS活化G-CSF表現的過程,雖然MEK/ERK pathway都影響了CSF-box以及octamer對G-CSF啟動子所貢獻的活性,但似乎MEK/ERK pathway的下游並非直接影響NF-κB調控基因轉錄的活性,而主要是影響了Oct-2對G-CSF啟動子的調控。此外,既然CSF-box以及octamer對G-CSF的啟動子活性缺一不可,那麼Oct-2和NF-κB之間可能存在著某種共同調控G-CSF表現的機制,尚待進一步釐清。 | zh_TW |
dc.description.abstract | Granulocyte-colony stimulating factor (G-CSF) is a 19kD glycoprotein. It is the major cytokine regulator of neutrophilic granulocyte because G-CSF was discovered could stimulate differentiation and proliferation of neutrophil and macrophage which are essential cell types for the clearance of bacterial pathogens. G-CSF could be dramatically and rapidly upregulated by several inflammatory stimuli such as LPS, TNF-α and IL-1β. Thus, the high level of G-CSF can help our body to defend the infection and inflammation. In these years, G-CSF was also shown to improve survival and recovery of cardiomyocyte and neuron, and to promote the mobilization of hemaopoietic stem cells from bone marrow to peripheral blood. These information indicate that G-CSF plays multiple and important physiological roles in human body. However, not much is known about regulation of G-CSF expression in macrophages.
In the present study, we used U0126 to inhibit the MEK1/2 activity induced by LPS and found that the LPS-induced G-CSF promoter activity, and G-CSF expression levels at mRNA and protein were dramatically blocked. There are two elements, a CSF-box and a octamer within G-CSF promoter are essential for its promoter activity. The CSF-box is a potential NF-κB binding site, and the octamer was bound by Oct-2 (unpublished result). Therefore, it is important to ask whether both Oct-2 and NF-κB participate the MEK/ERK dependent G-CSF expression. G-CSFp-(-289~+25)-Luc, CSF-box-deleted G-CSFp- (-145~+25)-Luc, or octamer-mutated Oct-mut-G-CSFp-(-289~+25)-Luc reporter plasmids were used to investigate the importance of CSF-box and octamer in response to LPS. I found that the CSF-box and the octamer were both indispensible for basal and LPS-induced G-CSF promoter activity, and the functions of these two elements were both inhibited by U0126. However, the LPS-induced activation of NF-κB was not affected by U0126 demonstrated by NF-κB reporter assay and Western blotting of p50 and p65 in nuclear extract. The results indicate that NF-κB transactivity is not diminished by U0126. In addition, the LPS-induced Oct-2 mRNA and protein expression were not inhibited by U0126. However, chromatin immunoprecipitation (ChIP) assay revealed that the LPS-induced Oct-2 binding to G-CSF promoter was strikingly reduced by pretreatment of U10126. Taken together, our data showed that both the CSF-box and the octamer are important for the LPS-induced G-CSF promoter activity, moreover, the activation of MEK/ERK signaling pathway is indispensible for LPS-induced G-CSF expression in RAW264.7 macrophage.. It seems that LPS-induced activation of MEK/ERK pathway does not directly regulates NF-κB transactivity, but is essential for LPS-induced Oct-2 binding to the octmaer within G-CSF promoter and transcription activation of the G-CSF expression. Moreover, since both the CSF-box and the octamer are indispensible for LPS-induced G-CSF promoter activity, there might be a coactivation mechanism composed of Oct-2 and NF-κB for G-CSF transcription. However, the mechanism is not yet understood and deserves further investigations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:53:50Z (GMT). No. of bitstreams: 1 ntu-97-R95442020-1.pdf: 1857239 bytes, checksum: 8e1a7fd26b0690274d70455db151e419 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 口試委員會審定書----------------------------------------- i
謝誌-----------------------------------------------------ii 中文摘要-----------------------------------------------viii 英文摘要--------------------------------------------------x 名詞縮寫對照表-----------------------------------------xiii 第一章 緒論 第一節 文獻回顧-------------------------------------------2 第二節 研究動機與實驗目的--------------------------------12 第二章 材料與方法 第一節 實驗材料------------------------------------------15 第二節 細胞的培養----------------------------------------17 第三節 質體的建構----------------------------------------17 第四節 分析細胞內基因mRNA表現量--------------------------23 第五節 小鼠之G-CSF啟動子活性分析-------------------------25 第六節 以西方墨點法(Western blot)進行細胞內蛋白質表量 之分析--------------------------------------------26 第七節 分泌性G-CSF蛋白質表現量之分析: Enzyme-Linked ImmunoSorbent Assay (ELISA)---------29 第八節 細胞外(in vitro)轉錄因子與啟動子結合之分析: Electrophoretic Mobility Shift Assay (EMSA)-------29 第九節 細胞內(in vivo)轉錄因子與啟動子結合之分析: Chromatin Immunoprecipitation (ChIP) Assay--------32 第十節 RNA干擾(RNAi):致弱Oc-2表現-----------------------34 第十一節 資料統計與分析---------------------------------34 Table 1 Sequences of primers----------------------------35 第三章 實驗結果 第一節 抑制MEK活性使LPS引發之G-CSF表現下降---------------37 第二節 CSF-box以及octamer對LPS誘導之G-CSF啟動子活性之 重要性以及U0126對G-CSF啟動子活性之影響------------37 第三節 U0126不影響LPS所引發之NF-κB活性-------------------38 第四節 U0126不影響LPS所促進之Oct-2表現量-----------------39 第五節 U0126對Oct-2的DNA結合能力之影響-------------------39 第四章 討論 第一節 LPS透過MEK/ERK pathway促進G-CSF啟動子活性及表現---42 第二節 轉錄因子NF-κB在U0126抑制G-CSF表現中所扮演的角色---43 第三節 轉錄因子Oct-2在U0126抑制G-CSF表現中所扮演的角色---44 第四節 總結----------------------------------------------46 第五章 圖表----------------------------------------------48 參考文獻-------------------------------------------------64 | |
dc.language.iso | zh-TW | |
dc.title | NF-κB及Oct-2在脂多醣透過MEK/ERK訊息傳遞路徑活化巨噬細胞表現G-CSF之過程中所扮演的角色 | zh_TW |
dc.title | Roles of NF-κB and Oct-2 in LPS-induced G-CSF expression mediated through MEK/ERK pathway in RAW264.7 macrophages | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張淑芬,姜安娜,徐立中,游偉絢 | |
dc.subject.keyword | 脂多醣,巨噬細胞,顆粒性白血球群落性促進因子, | zh_TW |
dc.subject.keyword | NF-κB,Oct-2,G-CSF,LPS,Raw264.7, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。