請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40618完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭明良 | |
| dc.contributor.author | Feng-Koo Hsieh | en |
| dc.contributor.author | 謝逢轂 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:53:28Z | - |
| dc.date.available | 2008-09-11 | |
| dc.date.copyright | 2008-09-11 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | Chen, M. F., P. C. Keng, et al. (2006). 'Inhibition of lung tumor growth and augmentation of radiosensitivity by decreasing peroxiredoxin I expression.' Int J Radiat Oncol Biol Phys 64(2): 581-91.
Chu, Y. W., P. C. Yang, et al. (1997). 'Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line.' Am J Respir Cell Mol Biol 17(3): 353-60. Cullinan, S. B., J. D. Gordan, et al. (2004). 'The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase.' Mol Cell Biol 24(19): 8477-86. Furukawa, M. and Y. Xiong (2005). 'BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.' Mol Cell Biol 25(1): 162-71. Greenlee, R. T., M. B. Hill-Harmon, et al. (2001). 'Cancer statistics, 2001.' CA Cancer J Clin 51(1): 15-36. Hayes, J. D., S. A. Chanas, et al. (2000). 'The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin.' Biochem Soc Trans 28(2): 33-41. Hayes, J. D. and M. McMahon (2006). 'The double-edged sword of Nrf2: subversion of redox homeostasis during the evolution of cancer.' Mol Cell 21(6): 732-4. Itoh, K., N. Wakabayashi, et al. (1999). 'Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.' Genes Dev 13(1): 76-86. Joo-Heon Kim, P. N. B., Nithya Ramnath, Yoorim Park,Jihnhee Yu, and Young-Mee Park (2007). 'Elevated Peroxiredoxin 1, but not NF-E2 Related Factor 2, Is an Independent Prognostic Factor for Disease Recurrence and Reduced Survival in Stage I Non-Small Cell Lung Cancer.' Clin Cancer Res 13(13): 3875-82. Kang, M. I., A. Kobayashi, et al. (2004). 'Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes.' Proc Natl Acad Sci U S A 101(7): 2046-51. Kensler, T. W., N. Wakabayashi, et al. (2007). 'Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.' Annu Rev Pharmacol Toxicol 47: 89-116. Kobayashi, A., M. I. Kang, et al. (2004). 'Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.' Mol Cell Biol 24(16): 7130-9. Kobayashi, M. and M. Yamamoto (2006). 'Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species.' Adv Enzyme Regul 46: 113-40. Li, J., M. J. Calkins, et al. (2007). 'Role of Nrf2-dependent ARE-driven antioxidant pathway in neuroprotection.' Methods Mol Biol 399: 67-78. McMahon, M., N. Thomas, et al. (2006). 'Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a 'tethering' mechanism: a two-site interaction model for the Nrf2-Keap1 complex.' J Biol Chem 281(34): 24756-68. Motohashi, H., F. Katsuoka, et al. (2004). 'Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway.' Proc Natl Acad Sci U S A 101(17): 6379-84. Motohashi, H. and M. Yamamoto (2007). 'Carcinogenesis and transcriptional regulation through Maf recognition elements.' Cancer Sci 98(2): 135-9. Nguyen, T., P. J. Sherratt, et al. (2003). 'Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome.' J Biol Chem 278(7): 4536-41. Ohta, T., K. Iijima, et al. (2008). 'Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth.' Cancer Res 68(5): 1303-9. Padmanabhan, B., K. I. Tong, et al. (2006). 'Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer.' Mol Cell 21(5): 689-700. Ramakers, G. J. (2002). 'Rho proteins, mental retardation and the cellular basis of cognition.' Trends Neurosci 25(4): 191-9. Singh, A., V. Misra, et al. (2006). 'Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer.' PLoS Med 3(10): e420. Travis, W. D., L. B. Travis, et al. (1995). 'Lung cancer.' Cancer 75(1 Suppl): 191-202. Velichkova, M., J. Guttman, et al. (2002). 'A human homologue of Drosophila kelch associates with myosin-VIIa in specialized adhesion junctions.' Cell Motil Cytoskeleton 51(3): 147-64. Velichkova, M. and T. Hasson (2003). 'Keap1 in adhesion complexes.' Cell Motil Cytoskeleton 56(2): 109-19. Wang, R., J. An, et al. (2008). 'Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues.' Biochem Biophys Res Commun. Yamamoto, T., T. Suzuki, et al. (2008). 'Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity.' Mol Cell Biol 28(8): 2758-70. Yesner, R. and D. Carter (1982). 'Pathology of carcinoma of the lung. Changing patterns.' Clin Chest Med 3(2): 257-89. Zhang, D. D. (2006). 'Mechanistic studies of the Nrf2-Keap1 signaling pathway.' Drug Metab Rev 38(4): 769-89. Zhang, D. D., S. C. Lo, et al. (2004). 'Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.' Mol Cell Biol 24(24): 10941-53. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40618 | - |
| dc.description.abstract | 在非小細胞肺癌(Non-small cell lung cancer)的研究證明,KEAP1 (Kelch-like ECH-associated protein 1)表現量降低使NRF2 (NF-E2-related factor 2)在細胞核內大量累積,造成phase II基因的大量表現,促進肺癌細胞的生長和存活能力。部分研究者推論KEAP1與NRF2在NSCLC的發展扮演重要角色,但NRF2在肺癌病人的組織染色分析發現NRF2和病人的預後以及存活並沒有顯著關聯,顯示KEAP1可能尚有功能未被釐清。本論文對52個肺腺癌病人檢體進行免疫組織染色分析,結果顯示早期患者的腫瘤組織KEAP1表現量高,末期患者的KEAP1表現量則非常低。統計學上的分析發現KEAP1表現高的病人存活的時間較低表現病人為長。我們發現在不同的肺腺癌細胞株,KEAP1的表現和浸襲能力呈現負相關。抑制KEAP1的表現將會增加細胞的浸襲能力;若大量表現KEAP1,則能有效抑制細胞的浸襲能力。更進一步的研究發現,大量表現的KEAP1可能透由降解RhoA抑制應力纖維 (stress fiber) 的形成,進而抑制細胞的浸襲能力。最後藉由活體動物實驗中,再次證明抑制KEAP1表現後增強了癌細胞的浸襲能力,並且促進了癌細胞的腫瘤發生能力(tumorigenesis)。總結實驗結果,我們首次發現KEAP1的表現能影響癌細胞的浸襲能力,這樣的過程可能與RhoA有關。 | zh_TW |
| dc.description.abstract | Previous studies revealed that weakened KEAP1 (Kelch liked ECH-associated protein 1) expression enhanced NRF2 (NF-E2-related factor 2) nuclear accumulation and elevated antioxidant responsive element (ARE)-mediated induction of phase II detoxifying and oxidative stress enzyme genes such as antioxidative and antixenobiotic stress enzymes and drug efflux pumps in non-small cell lung cancer, suggesting that gave lung cancer cells multiple advantages for proliferation. However, recent studies indicated that NRF2 was not correlated with reduced survival or overall survival of NSCLC. In this study, KEAP1 protein expression in 52 lung adenocarcinoma specimens was investigated immunohistochemically and was significantly correlated with overall survival. We found KEAP1 expressed higher in early stage lung adenocarcinoma than in late stage adenocarcinoma. Also, KEAP1 had ability to inhibit lung adenocarcinoma migration and invasion. At the mean time, we found that RhoA may be involved in this process. Moreover, in vivo animal study showed weakened KEAP1 expression promoted metastasis ability and primary tumorigenesis. In conclusion, our data suggested that KEAP1 may mediate lung adenocarcinoma migratory and invasive abilities through degradation of RhoA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:53:28Z (GMT). No. of bitstreams: 1 ntu-97-R94447003-1.pdf: 1221627 bytes, checksum: c4ce7c0c123d88ecf48aca7c7316ab6f (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Introduction 1
Materials and Methods 6 Results 1. KEAP1 expression positively correlated with survival of lung cancer patients 16 2. Expression of KEAP1 negative correlated with in vitro migratory/invasive abilities in human lung cancer cell line 17 3. Migratory and invasive abilities were significantly inhibited in KEAP1 over-expressed cell 18 4. Migratory and invasive abilities were promoted in KEAP1 knock- down cells 19 5. Expression of KEAP1 resulted in lung adenocarcinoma cell morphological changes 19 6. KEAP1 may indirectly mediated RhoA protein degradation 20 7. Silencing KEAP1 promoted human lung adenocarcinoma cells in vivo growth and metastasis ability 21 Discussion 23 Reference 26 Figures, Table and Figure legends 29 | |
| dc.language.iso | en | |
| dc.subject | 移動 | zh_TW |
| dc.subject | 肺腺癌 | zh_TW |
| dc.subject | 浸襲 | zh_TW |
| dc.subject | KEAP1 | en |
| dc.subject | migration | en |
| dc.subject | Lung adenocarcinoma | en |
| dc.subject | invasion | en |
| dc.title | 探討Role of Kelch-Like ECH-Associated Protein 1 (KEAP1)在人類肺腺癌移動與浸襲之角色 | zh_TW |
| dc.title | The Role of Kelch-Like ECH-Associated Protein 1 (KEAP1) in Lung Adenocarcinoma Migration and Invasion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王朝鐘,翁一鳴,夏興國,蕭宏昇 | |
| dc.subject.keyword | 肺腺癌,浸襲,移動, | zh_TW |
| dc.subject.keyword | Lung adenocarcinoma,KEAP1,migration,invasion, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
