Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40598
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊立民(Lee-Ming Chuang)
dc.contributor.authorSiow-Wey Heeen
dc.contributor.author許曉薇zh_TW
dc.date.accessioned2021-06-14T16:52:42Z-
dc.date.available2012-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-12
dc.identifier.citation1. Rusak, B. and I. Zucker, Neural regulation of circadian rhythms. Physiol Rev, 1979. 59(3): p. 449-526.
2. Dunlap, J.C., Molecular bases for circadian clocks. Cell, 1999. 96(2): p. 271-90.
3. Edery, I., Circadian rhythms in a nutshell. Physiol Genomics, 2000. 3(2): p. 59-74.
4. Mendoza, J., Circadian clocks: setting time by food. J Neuroendocrinol, 2007. 19(2): p. 127-37.
5. Yoo, S.H., et al., PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A, 2004. 101(15): p. 5339-46.
6. Preitner, N., et al., The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 2002. 110(2): p. 251-60.
7. Balsalobre, A., Clock genes in mammalian peripheral tissues. Cell Tissue Res, 2002. 309(1): p. 193-9.
8. Schibler, U., J. Ripperger, and S.A. Brown, Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms, 2003. 18(3): p. 250-60.
9. Zvonic, S., et al., Characterization of peripheral circadian clocks in adipose tissues. Diabetes, 2006. 55(4): p. 962-70.
10. Muhlbauer, E., et al., Indication of circadian oscillations in the rat pancreas. FEBS Lett, 2004. 564(1-2): p. 91-6.
11. Balsalobre, A., F. Damiola, and U. Schibler, A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell, 1998. 93(6): p. 929-37.
12. Storch, K.F., et al., Extensive and divergent circadian gene expression in liver and heart. Nature, 2002. 417(6884): p. 78-83.
13. Panda, S., et al., Coordinated transcription of key pathways in the mouse by the circadian clock. Cell, 2002. 109(3): p. 307-20.
14. Ptitsyn, A.A., et al., Circadian clocks are resounding in peripheral tissues. PLoS Comput Biol, 2006. 2(3): p. e16.
15. Ueda, H.R., et al., A transcription factor response element for gene expression during circadian night. Nature, 2002. 418(6897): p. 534-9.
16. Reddy, A.B., et al., Circadian orchestration of the hepatic proteome. Curr Biol, 2006. 16(11): p. 1107-15.
17. Gagliardino, J.J., R.E. Hernandez, and O.R. Rebolledo, Chronobiological aspects of blood glucose regulation: a new scope for the study of diabetes mellitus. Chronobiologia, 1984. 11(4): p. 357-79.
18. Van Cauter, E., K.S. Polonsky, and A.J. Scheen, Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev, 1997. 18(5): p. 716-38.
19. Arslanian, S., et al., Demonstration of a dawn phenomenon in normal adolescents. Horm Res, 1990. 34(1): p. 27-32.
20. Bolli, G.B., et al., Demonstration of a dawn phenomenon in normal human volunteers. Diabetes, 1984. 33(12): p. 1150-3.
21. la Fleur, S.E., et al., A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes, 2001. 50(6): p. 1237-43.
22. Spallone, V., et al., Relationship between the circadian rhythms of blood pressure and sympathovagal balance in diabetic autonomic neuropathy. Diabetes, 1993. 42(12): p. 1745-52.
23. Bray, M.S. and M.E. Young, Circadian rhythms in the development of obesity: potential role for the circadian clock within the adipocyte. Obes Rev, 2007. 8(2): p. 169-81.
24. Ando, H., et al., Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology, 2005. 146(12): p. 5631-6.
25. Rudic, R.D., et al., BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol, 2004. 2(11): p. e377.
26. Turek, F.W., et al., Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 2005. 308(5724): p. 1043-5.
27. Shimba, S., et al., Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A, 2005. 102(34): p. 12071-6.
28. Fontaine, C., et al., The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation. J Biol Chem, 2003. 278(39): p. 37672-80.
29. Laclaustra, M., D. Corella, and J.M. Ordovas, Metabolic syndrome pathophysiology: the role of adipose tissue. Nutr Metab Cardiovasc Dis, 2007. 17(2): p. 125-39.
30. Fajas, L., Adipogenesis: a cross-talk between cell proliferation and cell differentiation. Ann Med, 2003. 35(2): p. 79-85.
31. Feve, B., Adipogenesis: cellular and molecular aspects. Best Pract Res Clin Endocrinol Metab, 2005. 19(4): p. 483-99.
32. Lefterova, M.I. and M.A. Lazar, New developments in adipogenesis. Trends Endocrinol Metab, 2009. 20(3): p. 107-14.
33. Tang, Q.Q., T.C. Otto, and M.D. Lane, Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci U S A, 2003. 100(1): p. 44-9.
34. Farmer, S.R., Transcriptional control of adipocyte formation. Cell Metab, 2006. 4(4): p. 263-73.
35. Inuzuka, H., et al., Differential regulation of immediate early gene expression in preadipocyte cells through multiple signaling pathways. Biochem Biophys Res Commun, 1999. 265(3): p. 664-8.
36. Chen, Z., et al., Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab, 2005. 1(2): p. 93-106.
37. Birsoy, K., Z. Chen, and J. Friedman, Transcriptional regulation of adipogenesis by KLF4. Cell Metab, 2008. 7(4): p. 339-47.
38. Sakaue, H., et al., Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem, 2004. 279(38): p. 39951-7.
39. Fajas, L., et al., Selective cyclo-oxygenase-2 inhibitors impair adipocyte differentiation through inhibition of the clonal expansion phase. J Lipid Res, 2003. 44(9): p. 1652-9.
40. Chao, L.C., et al., Inhibition of adipocyte differentiation by Nur77, Nurr1, and Nor1. Mol Endocrinol, 2008. 22(12): p. 2596-608.
41. Boyle, K.B., et al., The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation. Cell Death Differ, 2009. 16(5): p. 782-9.
42. Garbarino-Pico, E., et al., Immediate early response of the circadian polyA ribonuclease nocturnin to two extracellular stimuli. RNA, 2007. 13(5): p. 745-55.
43. Green, C.B. and J.C. Besharse, Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. Proc Natl Acad Sci U S A, 1996. 93(25): p. 14884-8.
44. Baggs, J.E. and C.B. Green, Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr Biol, 2003. 13(3): p. 189-98.
45. Liu, X. and C.B. Green, Circadian regulation of nocturnin transcription by phosphorylated CREB in Xenopus retinal photoreceptor cells. Mol Cell Biol, 2002. 22(21): p. 7501-11.
46. Wang, Y., et al., Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse. BMC Dev Biol, 2001. 1: p. 9.
47. Barbot, W., et al., A murine gene with circadian expression revealed by transposon insertion: self-sustained rhythmicity in the liver and the photoreceptors. Biochim Biophys Acta, 2002. 1576(1-2): p. 81-91.
48. Li, R., et al., CLOCK/BMAL1 regulates human nocturnin transcription through binding to the E-box of nocturnin promoter. Mol Cell Biochem, 2008. 317(1-2): p. 169-77.
49. Green, C.B., et al., Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci U S A, 2007. 104(23): p. 9888-93.
50. Kawai, M., et al., Nocturnin: a circadian target of Pparg-induced adipogenesis. Ann N Y Acad Sci, 2010. 1192(1): p. 131-8.
51. Lin, N.Y., et al., Regulation of tristetraprolin during differentiation of 3T3-L1 preadipocytes. FEBS J, 2007. 274(3): p. 867-78.
52. Lai, W.S. and P.J. Blackshear, Interactions of CCCH zinc finger proteins with mRNA: tristetraprolin-mediated AU-rich element-dependent mRNA degradation can occur in the absence of a poly(A) tail. J Biol Chem, 2001. 276(25): p. 23144-54.
53. Lai, W.S., et al., Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol, 1999. 19(6): p. 4311-23.
54. Lin, N.Y., C.T. Lin, and C.J. Chang, Modulation of immediate early gene expression by tristetraprolin in the differentiation of 3T3-L1 cells. Biochem Biophys Res Commun, 2008. 365(1): p. 69-74.
55. Bouchard, L., et al., ZFP36: a promising candidate gene for obesity-related metabolic complications identified by converging genomics. Obes Surg, 2007. 17(3): p. 372-82.
56. Chen, Y.L., et al., Differential regulation of ARE-mediated TNFalpha and IL-1beta mRNA stability by lipopolysaccharide in RAW264.7 cells. Biochem Biophys Res Commun, 2006. 346(1): p. 160-8.
57. Liu, P., N.A. Jenkins, and N.G. Copeland, A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res, 2003. 13(3): p. 476-84.
58. Lee, E.C., et al., A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 2001. 73(1): p. 56-65.
59. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8.
60. Yang, W.S., et al., Allele-specific differential expression of a common adiponectin gene polymorphism related to obesity. J Mol Med, 2003. 81(7): p. 428-34.
61. Fingar, D.C. and M.J. Birnbaum, Characterization of the mitogen-activated protein kinase/90-kilodalton ribosomal protein S6 kinase signaling pathway in 3T3-L1 adipocytes and its role in insulin-stimulated glucose transport. Endocrinology, 1994. 134(2): p. 728-35.
62. Lin WH, T.T., Wang PH, Chuang LM Identification of differentially expressed genes during adipocyte differentiation and the effect of rosiglitazone on adipocyte gene expresssion. J Genet Mol Genet 2002. 13: p. 28-43.
63. Berry, D.C. and N. Noy, All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol, 2009. 29(12): p. 3286-96.
64. Gray, S., et al., The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem, 2002. 277(37): p. 34322-8.
65. Wang, Z.V., et al., Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol Cell Biol, 2007. 27(10): p. 3716-31.
66. Hishida, T., et al., Crucial roles of D-type cyclins in the early stage of adipocyte differentiation. Biochem Biophys Res Commun, 2008. 370(2): p. 289-94.
67. Kawai, M., et al., A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation. Proc Natl Acad Sci U S A, 2010. 107(23): p. 10508-13.
68. Rosen, E.D. and O.A. MacDougald, Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 2006. 7(12): p. 885-96.
69. Ohoka, N., et al., The orphan nuclear receptor RORalpha restrains adipocyte differentiation through a reduction of C/EBPbeta activity and perilipin gene expression. Mol Endocrinol, 2009. 23(6): p. 759-71.
70. Bezy, O., et al., TRB3 blocks adipocyte differentiation through the inhibition of C/EBPbeta transcriptional activity. Mol Cell Biol, 2007. 27(19): p. 6818-31.
71. Batchvarova, N., X.Z. Wang, and D. Ron, Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J, 1995. 14(19): p. 4654-61.
72. Bourillot, P.Y., et al., Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells, 2009. 27(8): p. 1760-71.
73. Gronke, S., et al., Curled encodes the Drosophila homolog of the vertebrate circadian deadenylase Nocturnin. Genetics, 2009. 183(1): p. 219-32.
74. Mori, T., et al., Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem, 2005. 280(13): p. 12867-75.
75. Caprio, M., et al., Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J, 2007. 21(9): p. 2185-94.
76. Gregoire, F.M., C.M. Smas, and H.S. Sul, Understanding adipocyte differentiation. Physiol Rev, 1998. 78(3): p. 783-809.
77. Ekholm, S.V. and S.I. Reed, Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol, 2000. 12(6): p. 676-84.
78. Goldstrohm, A.C. and M. Wickens, Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol, 2008. 9(4): p. 337-44.
79. Lai, W.S., D.J. Stumpo, and P.J. Blackshear, Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J Biol Chem, 1990. 265(27): p. 16556-63.
80. Sandler, H. and G. Stoecklin, Control of mRNA decay by phosphorylation of tristetraprolin. Biochem Soc Trans, 2008. 36(Pt 3): p. 491-6.
81. Marderosian, M., et al., Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene, 2006. 25(47): p. 6277-90.
82. Horner, T.J., et al., Stimulation of polo-like kinase 3 mRNA decay by tristetraprolin. Mol Cell Biol, 2009. 29(8): p. 1999-2010.
83. Raghavan, A., et al., HuA and tristetraprolin are induced following T cell activation and display distinct but overlapping RNA binding specificities. J Biol Chem, 2001. 276(51): p. 47958-65.
84. Cao, H., J.F. Urban, Jr., and R.A. Anderson, Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes. Obesity (Silver Spring), 2008. 16(6): p. 1208-18.
85. Strebhardt, K., Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov, 2010. 9(8): p. 643-60.
86. Jiang, N., et al., Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis. J Biol Chem, 2006. 281(15): p. 10577-82.
87. Iida, M., T. Sasaki, and H. Komatani, Overexpression of Plk3 causes morphological change and cell growth suppression in Ras pathway-activated cells. J Biochem, 2009. 146(4): p. 501-7.
88. Yang, Y., et al., Polo-like kinase 3 functions as a tumor suppressor and is a negative regulator of hypoxia-inducible factor-1 alpha under hypoxic conditions. Cancer Res, 2008. 68(11): p. 4077-85.
89. Sahar, S. and P. Sassone-Corsi, Metabolism and cancer: the circadian clock connection. Nat Rev Cancer, 2009. 9(12): p. 886-96.
90. Lecka-Czernik, B., C.J. Rosen, and M. Kawai, Skeletal aging and the adipocyte program: New insights from an 'old' molecule. Cell Cycle, 2010. 9(18): p. 3648-54.
91. Ziemke, F. and C.S. Mantzoros, Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr. 91(1): p. 258S-261S.
92. Bouchard, L., et al., Visceral adipose tissue zinc finger protein 36 mRNA levels are correlated with insulin, insulin resistance index, and adiponectinemia in women. Eur J Endocrinol, 2007. 157(4): p. 451-7.
93. Conn, C.W., et al., Incomplete cytokinesis and induction of apoptosis by overexpression of the mammalian polo-like kinase, Plk3. Cancer Res, 2000. 60(24): p. 6826-31.
94. Wang, Q., et al., Cell cycle arrest and apoptosis induced by human Polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol, 2002. 22(10): p. 3450-9.
95. Levine, A.J. and A.M. Puzio-Kuter, The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 2010. 330(6009): p. 1340-4.
96. Jensen, M.D., Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab, 2008. 93(11 Suppl 1): p. S57-63.
97. Hamdy, O., S. Porramatikul, and E. Al-Ozairi, Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev, 2006. 2(4): p. 367-73.
98. Berg, A.H., T.P. Combs, and P.E. Scherer, ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab, 2002. 13(2): p. 84-9.
99. Matsubara, M., S. Maruoka, and S. Katayose, Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab, 2002. 87(6): p. 2764-9.
100. Weisberg, S.P., et al., Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest, 2003. 112(12): p. 1796-808.
101. Gustafson, B., et al., Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis. Arterioscler Thromb Vasc Biol, 2007. 27(11): p. 2276-83.
102. Hotta, K., et al., Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol, 2000. 20(6): p. 1595-9.
103. Wood, I.S., et al., Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc, 2009. 68(4): p. 370-7.
104. Skurk, T., et al., Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab, 2007. 92(3): p. 1023-33.
105. Ye, J., Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond), 2009. 33(1): p. 54-66.
106. Trayhurn, P., B. Wang, and I.S. Wood, Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr, 2008. 100(2): p. 227-35.
107. Xu, D., et al., Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1alpha. J Biol Chem, 2010. 285(50): p. 38944-50.
108. Xu, D., et al., Regulation of PTEN stability and activity by Plk3. J Biol Chem, 2010. 285(51): p. 39935-42.
109. Villaret, A., et al., Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes, 2010. 59(11): p. 2755-63.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40598-
dc.description.abstract近期有越來越多研究指出Nocturnin (Noc, Ccrn4l)可以調控脂肪代謝及脂肪細胞分化。本篇論文我們探討在早期脂肪細胞分化過程中,Noc所參與調控的角色。首先我們發現Noc是唯一在脂肪細胞分化過程中,會呈現雙週期表現情形的已知去腺嘧啶酶 (deadenylase);而另四個Pan2, Parn, Ccr4, and Caf1去腺嘧啶酶則相對下降或沒變化。而利用Noc-silenced 3T3-L1前驅脂肪細胞及Noc基因剔除小鼠胚胎纖維母細胞primary mouse embryonic fibroblasts (MEFs),顯示出早期瞬間表現的Noc會調控複製擴增(mitotic clonal expansion)過程及影響cyclin D1的表現。進一步我們利用Noc¬-depleted 3T3-L1 脂肪細胞微陣列分析(microarray),證實大部份差異表現的基因是跟細胞生長及增生有關。在脂肪細胞早期分化期間,Noc會與mRNA 去穩定因子 tristetraprolin (TTP) 作結合。經由篩選TTP的標的基因,我們發現在Noc- / -小鼠的脂肪組織中, Polo-like kinase3 (Plk3)mRNA的表現量明顯上升。而Noc的表現也可進一步抑制Plk3在3T3- L1前脂肪細胞的表現。
另外,在人類的脂肪組織中,NOC mRNA 與空腹胰島素(fasting insulin)及血中胰島素抗性指標(HOMA- IR)呈現負相關性,而與adiponectin mRNA及血中濃度呈正相關性; 同時,NOC mRNA 也與TTP mRNA呈正相關性.另外,PLK3 mRNA表現量與體重指數 (BMI) 不相關,但其位於皮下脂肪(SAT)的表現量顯著高於腹部脂肪 (VAT)。此外,無論是VAT或SAT 的PLK3 mRNA表現量都與adiponectin mRNA及adiponectin血清濃度呈強烈正相關,另外在校正過年齡、性別及BMI後,SAT PLK3 mRNA仍與空腹胰島素(fasting insulin)及血中胰島素抗性指標呈現負相關性.透過本篇論文的研究,我們對於Noc調控脂肪細胞分化的機制有更明確的闡述,也強化了Noc在胰島素於脂肪組織調控代謝功能的重要性。同時,我們的研究結果顯示PLK3與胰島素的敏感性有強烈的相關性。
zh_TW
dc.description.abstractThe deadenylase nocturnin (Noc, Ccrn4l) has been recently found to regulate lipid metabolism and to control preadipocyte differentiation. Here we showed that among the five deadenylases tested; only Noc exhibited a biphasic expression during adipocyte differentiation, while the expression levels of other deadenylases, including Pan2, Parn, Ccr4, and Caf1 were relatively unchanged or reduced during adipogenesis. The immediate early-expressed Noc during 3T3-L1 adipogenesis was involved in regulating mitotic clonal expansion and cyclin D1 expression, as demonstrated in Noc-silenced 3T3-L1 cells and Noc-/- primary mouse embryonic fibroblasts (MEFs). Transcriptional profiling of Noc¬-depleted 3T3-L1 adipocytes revealed that most of the differentially expressed genes were related to cell growth and proliferation. An mRNA destabilizer, tristetraprolin (TTP), was further identified as an interacting partner of Noc during early adipogenesis. Screening of TTP mRNA targets in adipose tissue of Noc-/- mice revealed that the Polo-like kinase 3 (Plk3) mRNA expression was significantly upregulated. Ectopic expression of Noc further decreases Plk3 expression in 3T3-L1 preadipocytes.

In human adipose tissue, NOC mRNA level negatively associated with both fasting serum insulin and HOMA-IR, and positively associated with both adiponectin mRNA levels and circulating adiponectin levels. Moreover, NOC mRNA levels were also positively correlated with TTP mRNA levels in human adipose tissues. We further found that PLK3 mRNA levels were not associated with BMI, but were significant higher in subcutaneous adipose tissues (SAT) comparing to visceral adipose tissues (VAT). Furthermore, PLK3 mRNA levels in both VAT and SAT were strongly positively correlated with adiponectin gene expression as well as serum concentrations. The SAT PLK3 mRNA expressions were negatively correlated with fasting insulin levels and HOMA-IR even after adjustment of age, sex and BMI. Taken together, these results suggest the role of Noc in the modulation of early adipogenesis as well as systemic insulin sensitivity. Our findings also suggest that PLK3 is associated with systemic insulin sensitivity.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:52:42Z (GMT). No. of bitstreams: 1
ntu-100-D91448003-1.pdf: 1340061 bytes, checksum: aa15fc6084379ca580a0f1dfb443abf8 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書 1
誌謝 II
中文摘要 III
Abstract IV
Table of Contents V
1. Introduction
1.1  Circadian rhythms 1
1.2  Molecular clock components 1
1.3  Peripheral clock 1
1.4  Potential role for the circadian clock in metabolism 2
1.5  Adipose tissue 3
1.6  Adipocyte differentiation 3
1.7  Mitotic clonal expansion 3
1.8  Adipogenic transcription factors 3
1.9  Nocturnin (Ccrn4l, Noc) 4
1.10 Tristetraprolin 4
1.11 Polo-like kinase (Plk) family 4
1.12 Polo-like kinase 3 (Plk3) 5
1.13 Experimental rationale 5
2. Material and Methods 7
2.1  Materials 7
2.2  Plasmids 7
2.3  Targeted disruption of the Noc gene 7
2.4  Animals 8
2.5  Cell Culture 8
2.6  Oil red O staining 9
2.7  Lentivirus production and infection of 3T3-L1 cells 9
2.8  Reverse transcription and quantitative real-time PCR 9
2.9  Microarray analysis 9
2.10 Glucose transport assays 10
2.11 Bromodeoxyuridine incorporation assay 10
2.12 Immunoprecipitation and Western blot analysis 10
2.13 Study of human adipose tissues and metabolic phenotypes 11
2.14 Statistics 11
3. Results 12
3.1 Biphasic expression of Noc during 3T3-L1 adipogenesis 12
3.2 Noc knockdown accelerates the adipocyte differentiation process 12
3.3 Noc-/- embryonic fibroblast exhibit enhanced adipocyte differentiation 13
3.4 Effect of Noc knockdown on gene expression in 3T3-L1 adipocytes 13
3.5 Ectopic expression of Noc results in impaired adipogenesis 14
3.6 Depletion of Noc partially impedes MCE of adipogenesis 14
3.7 Noc interacts with TTP during early 3T3-L1 adipogenesis 15
3.8 NOC correlated with TTP, APM1 mRNA expression and metabolic parameters in human adipose tissues 15
3.9 Difference in PLK3 mRNA levels between VAT and SAT 16
3.10 Correlations between PLK3 and adiponectin gene expression in human adipose tissues 16
3.11 Correlations between PLK3 mRNA levels in human adipose tissue and metabolic phenotypes 17
4. Discussion 18
5. Tables 27
6. Figures 45
7. References 63
8. Appendix 74
dc.language.isoen
dc.subjectnocturninzh_TW
dc.subject脂肪細胞zh_TW
dc.subject胰島素抗性zh_TW
dc.subject代謝性症候群zh_TW
dc.subject晝夜節律zh_TW
dc.subjectmetabolic syndromeen
dc.subjectinsulin resistanceen
dc.subjectadipocyteen
dc.subjectnocturninen
dc.subjectcircadian rhythmen
dc.titleNocturnin基因在脂肪細胞分化、肥胖與代謝所扮演的角色zh_TW
dc.titleThe role of Nocturnin in adipogenesis,
obesity and metabolic disorders
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee呂勝春(Sheng-Chung Lee),黃青真(Ching-jang Huang),陳玉怜(Yuh-Lien Chen),張?仁(Ching-Jin Chang)
dc.subject.keyword晝夜節律,nocturnin,脂肪細胞,胰島素抗性,代謝性症候群,zh_TW
dc.subject.keywordcircadian rhythm,nocturnin,adipocyte,insulin resistance,metabolic syndrome,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2011-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved