請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40575完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑 | |
| dc.contributor.author | Ying-Chi Yang | en |
| dc.contributor.author | 楊瑩琦 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:51:53Z | - |
| dc.date.available | 2013-08-05 | |
| dc.date.copyright | 2008-08-05 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | [1] Miyasaka, K.C., Daniel, D.M., Stone, M.L., Hirshman, P., 1991. The incidence of knee ligament injuries in the general population. American Journal of Knee Surgery 4, 3–8.
[2] Frank, C., Woo, S.L.-Y., Amiel, D., Harwood, F., Gomez, M., Akeson, W., 1983. Medial collateral ligament healing. A multidisciplinary assessment in rabbits. American Journal of Sports Medicine 11 (6), 379–389. [3] Indelicato, P.A., 1983. Non-operative treatment of complete tears of the medial collateral ligament of the knee. Journal of Bone and Joint Surgery—American Volume 65 (3), 323–329. [4] Jokl, P., Kaplan, N., Stovell, P., Keggi, K., 1984. Non-operative treatment of severe injuries to the medial and anterior cruciate ligaments of the knee. Journal of Bone and Joint Surgery American Volume 66 (5), 741–744. [5] Kannus, P., 1988. Long-term results of conservatively treated medial collateral ligament injuries of the knee joint. Clinical Orthopaedic (226), 103–112. [6] Kannus, P., Jarvinen, M., 1987. Conservatively treated tears of the anterior cruciate ligament. Long-term results. Journal of Bone and Joint Surgery American Volume 69 (7), 1007–1012. [7] Hirshman, H.P., Daniel, D.M., Miyasaka, K., 1990. The fate of the unoperated knee ligament injuries. In: Danil,, D.A.W., O’Connor, J. (Eds.), Knee Ligaments: Structure , Function, Injury and Repair. Raven Press, New York, pp. 481–503. [8] Smith, L.A., Ma P.X. Nano-fibers scaffold gor tissue engineering. Colloids Surf B Biointerfaces, 2004. 39(3): p. 125-131 [9] Murray M.M., Spindler K.P. Anterior cruciate ligament healing and repair. Sports Med Arthroscopy Rev 2005;13:151–5. [10] Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC. Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. J Arthroscopic Rel Surg 2005;21:791–803. [11] Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL. Tissue engineering of ligaments. Ann Rev Biomed Eng 2004;6:131–56. [12] Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 2000;21:2461–74. [13] Rahaman MN, Mao JJ. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol Bioeng 2005;91:261–84. [14] Jackson DW, Grood ES, Goldstein JD, Rosen MA, Kurzweil PR, Cummings JF, et al. A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 1993;21:176–85. [15] Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, et al. Silk matrix for tissue engineered antior cruciate ligaments. Biomaterials 2002;23:4131–41. [16] Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials 2005;26:4805–16. [17] Frank C, Woo SLY, Amiel D, Harwood F, Gomez M, Akeson W. Medial collateral ligament healing—a multidisciplinary assessment in rabbits. Am J Sports Med 1983;11:379–89. [18] Caplan AI. Tissue engineering designs for the future: new logics, old molecules. Tissue Eng 2000;6:1–8. [19] Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 2003;22:81–91. [20] Petrigliano FA, McAllister DR, Wu BM. Tissue Engineering for Anterior Cruciate Ligament Reconstruction: A Review of Current Strategies. Arthroscopy: The Journal of Arthroscopic and Related Surgery, 2006(22): 441-451 [21] Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 2005;26(18):3929–39. [22] Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a threedimensional nanofibrous scaffold. Biomaterials 2005;26(25):5158–66. [23] Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004;25(7–8):1289–97. [24] Dan Li and Younan Xia. Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials 2004,16 (14): 1151-1170. [25] Lia WJ, Robert L. Maucka, James A. Cooper, Xiaoning Yuan, Rocky S.Tuan. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. Journal of Biomechanics 2007 (40) 1686–1693 [26] Ki C.S., Kim J.W., Hyun J.H., Lee K.H., Hattori M., Rah D.K., Park Y.H. Electrospun three-dimensional silk fibroin nanofibrous scaffold. Journal of Applied Polymer Science 2007 (6) 3922-3928 [27] Nam J., Huang Y., Agarwal S. Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Engineering 2007 (9) 2249-2257 [28] Majeti N.V., Ravi Kumar. A review of chitin and chitosan applications. Reactive & Functional Polymers 2006 (4) 1–27 [29] Angelova, N; Manolova N.; Rashkov, I.; Maximova, V.; Bogdanova, S.; Domard, A. Preparation and properties of modified chitosan films for drug release. J. Bioact. Compat. Polym. 1995, 10, 285–98. [30] Matsumoto H., Yako H., Minagawa M., Tanioka A. Characterization of chitosan nanofiber fabric by electrospray deposition: Electrokinetic and adsorption behavior. Journal of Colloid and Interface Science 2007 (310) 678–681 [31] Hasegawa M., Isogai A., Onabe F., Usuda M. Dissolving States of Cellulose and Chitosan in Trifluoroacetic Acid. Journal of Applied Polymer Science, 1992 (45), 1857-1863 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40575 | - |
| dc.description.abstract | 膝蓋韌帶損傷是很常見的運動傷害,尤其是前十字韌帶的斷裂,人體是無法自行修復的,一定要藉由手術植入韌帶替代物,其中包含以組織工程的概念所製的人工韌帶。細胞在奈米材料的幫助下,會有比較好的生長情形,而且韌帶細胞需要有方向性的基質,分泌較多相對的細胞外間質,電紡織法便是符合這些條件的最佳製備方法。
電紡織法(electrospinning)所製備的棚架,具有許多優異的性質可以應用於組織工程,例如:孔隙度高、表面積大、結構與天然的細胞外間質類似。但目前電紡織法還是有某些限制,例如:不易製成三維的結構,且孔洞太小以致細胞不容進到棚架內部。本研究將改善其缺點,製備出具有方向性的立體棚架應用於韌帶組織工程。 本研究所設計的新裝置為在原鋁箔收集板上添加不導電的壓克力板,壓克力板上再放置大小為1.5×1.5 mm2的鐵網或壓克力網。以幾丁聚醣為材料時,若使用鐵網,則可製備出直徑500-800 μm,高度3 mm的纖維束;若換為壓克力網,則纖維束的直徑為35-50 μm,高度亦為3 mm,二者都維持奈米纖維的微結構。此裝置也可以應用於其他材料,如以聚己內酯為材料時,將壓克力網改為3×3 mm2的大小時,纖維束高度從3 mm增加到5 mm,只是其微結構除了奈米纖維外亦伴隨有顆粒生成。 幾丁聚醣立體棚架以6.25%戊二醛蒸氣交聯8小時中和後,與韌帶細胞共同培養5天之後可以看到細胞的確會沿著纖維的微結構生長,並具有伸長的形態,且5天後纖維束中的奈米結構依然存在,因此我們證實了所製備出來的材料,確實提供很好的生長環境。 | zh_TW |
| dc.description.abstract | Ligament injury is very common in knee, especially anterior cruicate ligament (ACL). When ACL broke, it does not repair spontaneously. The surgery is often required to implant a replacement such as artificial ligaments or scaffolds made by tissue engineering concept.
Cells in nanoscale scaffolds express better characteristics than in other structures. Ligament cells in alignment substrate will secrete more relative extra cellular matrix (ECM).[17] The electrospinning technology can provide both nanocsale and alignment structure. However, the disadvantages of electrospinning are that the scaffold is just a thin film and the pore size is too small to allow cell passage. A new modified method has been proposed in this study to fabricate an aligned scaffold structure for thicker size and improved cellular entry. We put a non conductive PMMA on the aluminum foil and upon the PMMA is an 1.5x1.5 mm2 iron or PMMA net. The new apparatus combine with chitosan in electrospinning can fabricate 3-D aligned micro/nanofibrous structure. When using the iron net, the mean fiber diameters of 500-800 μm and the height of 3 mm. While using the PMMA net, the mean fiber diameters of 35-50 μm and the height of 3mm. The equipment can also be applied to other materials, such as polycaprolactone (PCL). When the PMMA net of 3×3 mm2, the fibers height increase from 3 mm to 5 mm. But the nanofibrous structure also formed with particles. The chitosan scaffolds were crosslinked by 6.25% glutaraldehyde steam for 8 hour, then neutralized with NaOH. The ligament cells were seeded on the scaffolds. And cultured for 5 days, the morphology of cells were spindle shape and these cells aligned along the nanofibrous structure. The scaffold designed in the study provided a proper environment for ligament cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:51:53Z (GMT). No. of bitstreams: 1 ntu-97-R95548032-1.pdf: 7612243 bytes, checksum: 9c71e81775d45be50a6498bcb431a133 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 圖目錄 II
表目錄 V 摘要 VI Abstract VII 第一章 序論 1 1-1 前言 1 1-2 韌帶損傷的治療與修復 2 1-3 韌帶組織工程 3 1-3-1 訊息因子 4 1-3-2 細胞 4 1-3-3 棚架 5 1-4 電紡織法 6 1-5 幾丁聚醣 11 1-6 研究目的 13 第二章 實驗材料與方法 14 2-1 實驗儀器 14 2-2 實驗藥品 15 2-3 韌帶細胞初代培養 16 2-3-1 配製初代培養所需溶液及試劑 16 2-3-2 分離培養韌帶細胞 17 2-4 棚架的製備 17 2-4-1 電紡織裝置 18 2-4-2 收集法 18 2-4-3 壓克力網的製備 19 2-4-4 高分子溶液的配製與流速控制 19 2-5 奈米纖維材料的交聯、中和及滅菌 20 2-6 幾丁聚醣薄膜的製備 20 2-7 細胞在材料上的培養 21 2-8 利用掃描式電子顯微鏡(SEM)觀察細胞型態 21 2-9 以DiI螢光染劑標定韌帶細胞 21 2-10 以非線性光學顯微術觀察細胞外間質 22 第三章 研究結果與討論 23 3-1 幾丁聚醣/三氟醋酸溶液的電紡織結果與討論 23 3-2 流速對電紡織的影響 23 3-3 鐵網裝置對電紡織的影響 26 3-4 以絕緣性材料網格取代鐵網所製備的三維立體棚架 27 3-5 以不同大小的壓克力網格製備三維立體棚架 28 3-6 不同濃度戊二醛交聯8小時與中和後結果 30 3-7 韌帶細胞培養 38 3-8 以螢光染劑DiI標定韌帶細胞觀測細胞與材料間的交互作用 39 3-9 以非線性光學顯微鏡觀測細胞與材料間的交互作用 41 第四章 結論 43 第五章 參考文獻 44 | |
| dc.language.iso | zh-TW | |
| dc.subject | 組織工程 | zh_TW |
| dc.subject | 電紡織 | zh_TW |
| dc.subject | 交聯 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | crosslink | en |
| dc.subject | ECM | en |
| dc.subject | Electrospinning | en |
| dc.subject | aligned nanofiber | en |
| dc.subject | chitosan | en |
| dc.title | 以不同參數探討電紡織法於三維立體棚架製備之影響及其於韌帶組織工程之應用 | zh_TW |
| dc.title | A Novel 3D Scaffold Method by Electrospinning Technique for Ligament Tissue Engineering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾次文,劉得任 | |
| dc.subject.keyword | 電紡織,組織工程,交聯,幾丁聚醣, | zh_TW |
| dc.subject.keyword | Electrospinning,aligned nanofiber,chitosan,ECM,crosslink, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
