請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40569
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃孝平(Hsiao-Ping Huang 黃孝平) | |
dc.contributor.author | Chih-Chun Hsu | en |
dc.contributor.author | 許智鈞 | zh_TW |
dc.date.accessioned | 2021-06-14T16:51:41Z | - |
dc.date.available | 2008-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-29 | |
dc.identifier.citation | [中文]
[1] 林禹德,水解乙酸甲酯反應蒸餾系統之設計與控制,國立台灣大學化學工程學研究所碩士論文(2006). [2] 賴一寬,共沸進料之反應蒸餾程序設計:乙酸乙酯及乙酸異丙酯,國立台灣大學化學工程學研究所碩士論文(2005) [3] 林立強,不同相對揮發度排序在反應性蒸餾系統設計的影響:過量反應物設計,國立台灣大學化學工程學研究所碩士論文(2007) [英文] [4] Amminudin, K. A.; Smith, R., “Design and Optimization of Fully Thermally Coupled Distillation Columns. Part 1: Preliminary Design and Optimization Methodology,” Trans ICHemE, A79, 701-713 (2001) [5] Aspen Dynamics, Release 11.1, Aspen Technology, Inc., Cambridge, MA, USA (2001). [6] Aspen Plus, Release 11.1, Aspen Technology, Inc., Cambridge, MA, USA (2001). [7] Barbosa, D.; Doherty, M. F., “ The Simple Distillation of Homogeneous Reactive Mixtures,” Chem. Eng. Sci., 43, 541 (1988). [8] Barbosa, D.; Doherty, M. F., “The INFluence of Equilibrium Chemical Reactions on Vapor-Liquid Phase Diagrams,” Chem. Eng. Sci., 43, 529 (1988a). [9] Chang, J. W.; Yu, C. C., “The Relative Gain for Non-Square Multivariable System,” Chem. Eng. Sci., 45, 1309-1323 (1990). [10] Chen, F.; Huss, R.S.; Malone, M. F.; Doherty, M. F., “Simulation of Kinetic Effect in Reactive Distillation Column,” Ind. Eng. Chem. Res., 33, 2738 (1994). [11] Doherty, M. F.; Buzad, G., “Reactive Distillation by Design,” Trans IchemE, A70, 448 (1992). [12] Doherty, M. F. ; Malone, M. F. Conceptual Design of Distillation System, McGraw-Hill: New York (2001). [13] Fidkowski, Z.; Krolikowski, L., “Minimum Energy Requirements of Thermally Coupled Distillation Systems,” AIChE J, 33(4), 643 (1988) [14] Fuchigami,Y., ” Hydrolysis of Methyl Acetate in Distillation Column Packed with Reactive Packing of Ion Exchange Resin.” J. Chem. Eng. Jpn, 23(3), 354 (1990). [15] Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K., Azeotropic Data, Weinheim : Wiely-VCH, Germany (2004). [16] Hayden, J. G.; O’Connell, J. P., “A Generalied Method for Predicting Second Virial Coefficients,” Ind. Eng. Chem. Proces Des., 14, 209 (1975). [17] Horsley, L. H., Azeotropic data - III, Advances in Chemistry Series No. 116, American Chemical Society, Washington, D.C. (1973). [18] Huang, H. P.; Jeng, J. C.; Chiang, C. H.; Pan, W., “A direct method for multi-loop PI/PID controller design”, J. Process Control , 13, 769-786 (2003). [19] Kim, Young Han, “A new fully thermally coupled distillation column with postfractionator,” Chemical Engineering and Processing, 45(n4), 254-263, (2006) [20] Kim, Young Han, “Structural design and operation of a fully thermally coupled distillation column,” Chemical Engineering Journal, 85(n2-3), 289-301, (2002) [21] Kim, K. J.; Roh, H. D., “Reactive Distillation Process and Equipment for the Production of Acetic Acid and Methanol from Methyl Acetate Hydrolysis.” U.S. Patent 5770770 (1998). [22] Lestak, F.; Smith, R.; Dhole, V.R., “Heat transfer across the wall of dividing wall columns,” Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A, 72(nA5), 639-644, (1994) [23] Malone, M. F.; Doherty, M. F., “Reactive Distillation,” Ind. Eng. Chem. Res., 39, 3953 (2000). [24] Mueller, Ivo.; Kenig, Eugeny Y., “Reactive distillation in a dividing wall column: Rate-based modeling and simulation,” Industrial and Engineering Chemistry Research, 46(n11), 3709-3719, (2007) [25] Mutalib, M.I. Abdu.; Zeglam, A.O.; Smith, R., “Operation and control of dividing wall distillation columns. Part 2: Simulation and pilot plant studies using temperature control,” Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A, 76(nA3), 319-334, (1998) [26] Mutalib, M.I. Abdul.; Smith, R., “Operation and control of dividing wall distillation columns. Part 1: Degrees of freedom and dynamic simulation,” Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A, 76(nA3), 308-318, (1998) [27] Okasinski, M. J.; Doherty, M. F., “Thermodynamic Behavior of Reactive Azeotropes,” AIChE J., 43, 2227 (1997) [28] Petlyuk, F. B.; Platonov, V. M.; Slavinskii, D. M., “Thermodynamically Optimal Method for Separating Muticomponent Mixture,” Int Chem Eng, 5(3), 561 (1965) [29] Pöpken, T., Götze, L.; Gmehling, J., “Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis.” Ind. Eng. Chem. Res., 39(7), 2601 (2000). [30] Pöpken, T.; Götze, L.; Gmehling, J., “Synthesis and Hydrolysis of Methyl Acetate by Reactive Distillation Using Structured Catalytic Packings: Experiments and Simulation,” Ind. Eng. Chem. Res., 40(6), 1566 (2001). [31] Qiu, T.; Ma, P. S.; Wang, L. E.; Zheng, H. D., “Determination and correlation of liquid-liquid equilibrium data for the methyl acetate-methanol-water ternary system,” Huaxue Gongcheng/Chemical Engineering (China), 32(4), 62 (2004). [32] Ryan, P J.; Doherty, M. F., “Design/optimization of ternary heterogeneous azeotropic distillation sequences.” AIChE J., 35(10), 1592 (1989). [33] Sander, S.; Flisch, C.; Geissler, E.; Schoenmakers, H.; Ryll, O.; Hasse, H., “Methyl Acetate Hydrolysis in a Reactive Divided Wall Column,” Chemical Engineering Research and Design, 85(n1A), 149-154, (2007). [34] Suphanit, B.; Bischert, A.; Narataruksa, P., “Exergy loss analysis of heat transfer across the wall of the dividing-wall distillation column,” Energy, 32(n11), 2121-2134, (2007) [35] Sotudeh, Noori; Shahraki, Bahram Hashemi., “Extension of a method for the design of divided wall columns,” Chemical Engineering and Technology, 31(n1), 83-86, (2008) [36] Sotudeh, Noori; Shahraki, Bahram Hashemi., “A method for the design of divided wall columns,” Chemical Engineering and Technology, 30(n9), 1284-1291, (2007) [37] Tang, Y. T.; Chen, Y. W.; Hung, S, B.; Huang, H. P.; Lee, M. J.; Yu, C. C., “Design of Reactive Distillations for Acetic Acid Esterification with Different Alcohols,” AIChE J. , 51, 1683-1699, (2005). [38] Tedder, D. W.; Rudd, D. F., “Parametric Studies in Industrial Distillation: Part 1. Design Comparisons,” AIChE, 24(n2), 303-315 (1978) [39] Triantafyllou, C.; Smith, R., “The Design and Optimisation of Fully Thermally Coupled Distillation Columns,” Trans ICHemE, A70, 118-132 (1992) [40] Vora, N.; Daoutidis, P., “Dynamic and Control an Ethyl Acetate Reactive Distillation,” Ind. Eng. Chem. Res., 40, 833 (2001). [41] Wang, San-Jang; Wong, David S.H., “Controllability and energy efficiency of a high-purity divided wall column,” Chemical Engineering Science, 62(n4), 1010-1025, (2007) [42] Wang, San-Jang; Lee, Chi-Ju; Jang, Shi-Shang; Shieh, Shyan-Shu, “Plant-wide design and control of acetic acid dehydration system via heterogeneous azeotropic distillation and divided wall distillation,” Journal of Process Control, 18(n1), 45-60, (2008) [43] Xiao, J.; Liu, J.; Li, J.; Jiang, X.; Zhang, Z., “Increase MeOAc Conversion in PVA Production by Replacing the Fixed Bed Reactor with a Catalytic Distillation Column.” Chem. Eng. Sci, 56(23), 6553 (2001). [44] Xu, Z. P.; Chuang, K. T., “Kinetics of acetic acid esterification over ion exchange catalysts.” Can. J. Chem. Eng, 74(4), 493 (1996). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40569 | - |
dc.description.abstract | 反應性分隔內壁蒸餾塔目前研究文獻並不多見,現有的文獻大都反應程度不佳,我們認為在設計反應性分隔內壁蒸餾塔前,須先針對原有的反應性蒸餾架構設計進行研究,再進一步去做熱整合,如此可以避免在直接設計反應性分隔內壁蒸餾塔時轉化率不佳的問題。在本論文中依照乙酸甲酯水解反應的特性來設計不同反應性分隔內壁蒸餾塔,可改善轉化率及產品純度問題,採用Aspen Plus 11.1及其RadFrac模組進行程序之模擬,藉由程序最小年總成本(TAC)的計算以獲得最適設計的架構。
依照乙酸甲酯水解反應特性設計的反應性分隔內壁蒸餾塔的確改善了反應程度不佳及產品純度問題,比較熱整合架構與未熱整合架構,熱整合架構耗能及年總成本都較原本未熱整合架構低,耗能最高可節省約45%,年總成本最高節省約28%,效果驚人,足見反應性分隔內壁蒸餾塔有其發展潛力,根據研究結果顯示其節能來源是消除了反應蒸餾塔底的再混合效應。 在模擬進行上,本論文提出另一種模組型態之模擬架構,較文獻上簡略模擬更接近實際的分隔內壁蒸餾塔架構,但模擬時較為耗時,因必須不斷疊代壓力以求系統合理性,模擬出來結果較一般文獻模擬方法計算出來的能耗較高,年總成本也較高,但與未熱整合架構相比仍有省能及節省年總成本效益。最後本研究亦討論了此組態下之控制架構,由動態模擬結果發現,雖然可使用的自由度很多,但僅需進料比及再沸器能耗兩個自由度即可解決系統產能及進料組成擾動的問題。 | zh_TW |
dc.description.abstract | Because the price of the crude oil is arising constantly, the exploitation of energy saving becomes one of the recent focuses in research. Utilizing integrated multi-functional unit to replace some single function units is one effective approach toward this goal. Reactive distillation column (RD) and divided wall column (DWC) are examples of such integration. A further integration of RD and DWC is thus motivated and is called reactive divided wall column (RDWC). The methyl acetate hydrolysis process with RDWC design was first proposed by Sander (2007). However, their work was aimed to illustrate that the concept of RDWC could be physically feasible for industry. From their research, the major products (i.e. methanol and acetic acid) are not as pure as the industrial grade. To overcome this deficiency, the design of RDWC aimed to high quality products and the possible energy savings achievable are studied.
In this thesis, traditional RD configurations which contains one RD column and possible separation distillation columns for methyl acetate hydrolysis is studied. In these configurations, RD top condenser contains 10 times catalyst than reactive tray and has total reflux to improve the methyl acetate conversion. Except the methyl acetate, the acetic acid, methanol, and excess reactant water are drawn from the RD bottom and fed into the separation distillation columns. It is found that although the above-mentioned configurations can achieve high product specifications, it needs much more reboiler duty and total annual cost. To decrease the energy consumption and capital cost reduction, the above process is integrated to a RDWC configuration. By simulation, it proves that this RDWC can be an effective design. Compared with the original configuration, the original RD reboiler is removed. From this RDWC design, all energy required is provided by the reboiler of the second column. The resulting RDWC can reduce 45 % energy demand and 25 % total annual cost. It is observed that, to make this major saving possible, this RDWC avoids the remixing effect that used to take place is the original RD bottom. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:51:41Z (GMT). No. of bitstreams: 1 ntu-97-R95524042-1.pdf: 1831792 bytes, checksum: 96da56e8f2d1ad5b6203c38db84791bd (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 誌謝 I
摘要 III Abstract V 目錄 VII 圖索引 XI 表索引 XV 1. 緒論 1 1.1 前言 1 1.2 文獻回顧 8 1.3 研究動機 11 1.4 組織章節 12 2. 熱力學及動力學模式 14 2.1 前言 14 2.2 熱力學模式 15 2.2.1 液相之熱力學模式 16 2.2.2 氣相之熱力學模式 17 2.2.3 兩相區分布之探討 18 2.2.4 乙酸甲酯反應蒸餾系統之蒸餘曲線圖分析 19 2.3 動力學模式 24 3. 穩態設計 26 3.1 前言 26 3.2 架構設計概念 27 3.3 反應蒸餾塔與側流塔整合 36 3.3.1 林禹德架構描述 36 3.3.2 RD & Sidedraw架構描述 39 3.3.3 RD & Sidedraw架構最適化步驟 44 3.3.4 RD & Sidedraw架構最適化結果 48 3.3.5 RDWC (Sidedraw)架構描述 53 3.3.6 RDWC (Sidedraw)模擬最適化步驟 53 3.3.7 RDWC (Sidedraw)模擬最適化結果 57 3.3.8 總結 61 3.4 反應蒸餾塔與間接序列式分離程序整合 63 3.4.1 前言 63 3.4.2 RD & PTC架構描述 63 3.4.3 RD & PTC最適化步驟 67 3.4.4 RD & PTC最適化結果 69 3.4.5 RPTC & 3rd架構敘述 73 3.4.6 RPTC & 3rd架構最適化步驟 77 3.4.7 RPTC & 3rd架構最適化結果 79 3.4.8 RDWC (PTC)架構敘述 84 3.4.9 比較及總結 91 3.5 反應蒸餾塔與前置塔整合 93 3.5.1 RD & Pre架構敘述 93 3.5.2 RD & Pre架構最適化步驟 94 3.5.3 RD & Pre架構最適化結果 97 3.5.4 RD & Petlyuk架構敘述 100 3.5.5 RD & Petlyuk架構最適化步驟 102 3.5.6 RD & Petlyuk架構最適化結果 105 3.5.7 RDWC (FTC)架構敘述 108 3.5.8 比較及總結 115 4. 穩態設計模擬方法改進 117 4.1 問題描述 117 4.2 模擬方法改進 118 4.3 RDWC (Sidedraw)架構最適化 119 4.4 RDWC (Sidedraw)新架構最適化結果 123 4.5 總結 129 5. 動態模擬與控制 130 5.1 前言 130 5.2 控制環路設計 130 5.3 控制架構探討 131 5.3.1 控制架構分類 (CS1~CS2) 131 5.3.2 系統所承受干擾 133 5.4 控制點及操作變數之決定 134 5.4.1 開環路靈敏度分析 134 5.4.2 非方形相對增益 135 5.4.3 RGA配對分析 137 5.4.4 閉環路靈敏度分析 138 5.4.5 控制器參數調諧方法 139 5.5 CS1動態模擬結果 141 5.5.1 進料流量擾動測試 141 5.5.2 進料組成擾動測試 143 5.6 CS2動態模擬結果 144 5.6.1 進料流量擾動測試 145 5.6.2 進料組成擾動測試 146 6. 結論 148 7. 未來展望 150 7.1 乙酸乙酯反應蒸餾架構敘述 150 7.2 乙酸乙酯熱整合架構 152 7.3 可行架構分析 153 附錄 159 A. TAC計算公式 159 參考文獻 162 作者簡介 167 | |
dc.language.iso | zh-TW | |
dc.title | 乙酸甲酯水解反應之反應性分隔內壁蒸餾塔架構設計與控制 | zh_TW |
dc.title | Design and Control of Reactive Divided Wall Column for Hydrolysis of Methyl Acetate System | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 余政靖,陳誠亮,錢義隆,汪上曉 | |
dc.subject.keyword | 反應蒸餾,分隔內壁蒸餾塔,反應性分隔內壁蒸餾塔,乙酸甲酯水解, | zh_TW |
dc.subject.keyword | Reactive Distillation,Divided Wall Column,Reactive Divided Wall Column,Thermal Coupled Distillation Column,Hydrolysis of Methyl Acetate, | en |
dc.relation.page | 167 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。