Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40565
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林順福(Shun-Fu Lin)
dc.contributor.authorShao-Fen Kaoen
dc.contributor.author高紹芬zh_TW
dc.date.accessioned2021-06-14T16:51:30Z-
dc.date.available2021-08-11
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-12
dc.identifier.citation台灣省政府糧食處。1997。台灣主要稻作品種外觀辨識參考手冊。台灣省政府糧食處。台北。
行政院農業委員會農糧署。2009。優良水稻栽培管理技術手冊。台灣農藝學會。
朱雅玲。2002。利用SSR分子標誌建立水稻連鎖圖譜及分析F2族群之遺傳重組。國立台灣大學農藝學研究所碩士論文。
李文雅。2008。水稻重組自交系連鎖圖譜之建立及遺傳重組分析。國立台灣大學農藝學研究所碩士論文。
林崇正、李長沛、鄭舒允、林育宗、許愛娜、曾富生、吳詩都、古新梅。2007。利用水稻ssr分子標誌偵測影響米質的數量性狀基因座. 作物、環境與生物資訊 4:269-284。
洪梅珠。2003。米飯食味品質與澱粉特性間相關研究之(二)。台中區農業改良場研究會報 79:41-50。
陳正昇。2009。以分子輔助選種導入hd1、Hd6和ehd1抽穗期基因至水稻越光品種。國立台灣大學農藝學研究所碩士論文。
潘成玉。2005。氮素對水稻穀粒蛋白質表現及品質形成之影響。國立台灣大學農藝學研究所碩士論文。
謝汶宗。2006。利用SSR分子標誌分析F3族群之遺傳重組。國立台灣大學農藝學研究所碩士論文。
Bao J., Corke H. and Sun M. (2002) Microsatellites in starch-synthesizing genes in relation to starch physicochemical properties in waxy rice (Oryza sativa L.). Theor. Appl. Genet. 105:898-905.
Cai Y., Wang W., Zhu Z., Zhang Z., Lang Y. and Zhu Q. (2006) Effects of water stress during grain-filling period on rice grain yield and its quality under different nitrogen levels. Ying Yong Sheng Tai Xue Bao 17:1201-1206.
Cho Y. G., Kang H. J., Lee Y. T., Jong S. K., Eun M. Y. and McCouch S. R. (2010) Identification of quantitative trait loci for physical and chemical properties of rice grain. Plant Biotechnol. Rep. 4:61-73.
Churchill G. A. and Doerge R.W. (1994) Empirical threshold values for quantitative trait mapping. Genetics 89:49-53.
Conway G. R. and Pretty J. N. (1988) Fertilizer risks in developing countries. Nature 334:207-208.
Dong M. H., Sang D. Z., Wang P., Wang X. M. and Yang J. C. (2007) Changes in cooking and nutrition qualities of grains at different positions in a rice panicle under different nitrogen levels. Rice Science 14:141-148.
Doyle J.J. and Doyle J.L. (1990) Isolation of plant DNA from fresh tissue. Focus 12:13-15.
Fageria N. K., Baligar V. C. and Li Y. C. (2008) The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 31:1121 - 1157.
FAO. (2011) FAOSTAT. Homepage. http://faostat.fao/org.
Fitzgerald M. A., McCouch S. R. and Hall R. D. (2009) Not just a grain of rice: the quest for quality. Trends. Plant Sci. 14:133-139.
Garris A. J., Tai T. H., Coburn J., Kresovich S. and McCouch S. R. (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631-1638.
Gramene. (2011) GRAMENE. Homepage. http://www.gramene.org/.
Hui G., MA Q., LI G. Y., YANG X., LI X. Q., YIN C. Y., LI M., ZHANG Q., ZHANG H. C., DAI Q. G. and WEI H. Y. (2010) Effect of nitrogen application rate on cooking and eating qualities of different growth-development types of japonica rice. Scientia Agricultura Sinica 43:10.
International Rice Genome Sequencing Project. (2005) The map-based sequence of the rice genome. Nature 436:793-800.
Jena K. K. and Mackill D. J. (2008) Molecular markers and their use in marker-assisted selection in rice. Crop Sci. 48:1266-1276.
Kepiro J. L., McClung A. M., Chen M. H., Yeater K. M. and Fjellstrom R. G. (2008) Mapping QTLs for milling yield and grain characteristics in a tropical japonica long grain cross. J. Cereal Sci. 48:477-485.
Kinoshita T. and Takamure I. (1990) Gene mapping of the first and second linkage groups in rice. J. Fac. Agr. Hokkaido U. 64:10.
Kobayashi A. and Tomita K. (2008) QTL detection for stickiness of cooked rice using recombinant inbred lines derived from crosses between japonica rice cultivars. Breeding Sci. 58:8.
Kobayashi A., Genliang B., Shenghai Y. and Tomita K. (2007) Detection of quantitative trait loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties. Breeding Sci. 57:107-116.
Li J., Xiao J., Grandillo S., Jiang L., Wan Y. W., Deng Q. D., Deng L. and McCouch S. R. (2004) QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47:697-704.
Li Z. K., Yu S. B., Lafitte H. R., Huang N., Courtois B., Hittalmani S., Vijayakumar C. H. M., Liu G. F., Wang G. C., Shashidhar H. E., Zhuang J. Y., Zheng K. L., Singh V. P., Sidhu J. S., Srivantaneeyakul S. and Khush G. S. (2003a) QTL × environment interactions in rice. I. Heading date and plant height. Theor. Appl. Genet. 108:141-153.
Li Z. F., Wan J. M., Xia J. F. and Zhai H. Q. (2003b) Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.). Yi Chuan Xue Bao 30:251-259.
Lian X., Xing Y., Yan H., Xu C., Li X. and Zhang Q. (2005) QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor. Appl. Genet. 112:85-96.
Liang F., Deng Q., Wang Y., Xiong Y., Jin D., Li J. and Wang B. (2004) Molecular marker-assisted selection for yield-enhancing genes in the progeny of “9311×O. rufipogon” using SSR. Euphytica 139:159-165.
Lincoln S. E., Daly M. J. and Lander E. S. (1993) Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. 3rd ed. A Whitehead Institute for Biomedical Research Technical Report.
Martin M. and Fitzgerald M. A. (2002) Proteins in rice grains influence cooking properties! J. Cereal Sci. 36:285-294.
Mei H. W., Luo L. J., Ying C. S., Wang Y. P., Yu X. Q., Guo L. B., Paterson A. H. and Li Z. K. (2003) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor. Appl. Genet. 107:89-101.
Mei H. W., Li Z. K., Shu Q. Y., Guo L. B., Wang Y. P., Yu X. Q., Ying C. S. and Luo L. J. (2005) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor. Appl. Genet. 110:649-659.
Miura K., Ashikari M. and Matsuoka M. (2011) The role of QTLs in the breeding of high-yielding rice. Trends. Plant Sci. 16:319-326.
Ogata T., Yoshimura A., Maatuse Y., Tsunematsu H. and Iwata N. (1996) QTL analysis for palatability and physicochemical properties of milled rice. Breeding Sci. 46 (supple. 2):201.
Orjuela J., Garavito A., Bouniol M., Arbelaez J., Moreno
L., Kimball J., Wilson G., Rami J. F., Tohme J., McCouch S. R. and Lorieux M. (2010) A universal core genetic map for rice. Theor. Appl. Genet. 120:563-572.
Perez C. M., Juliano B. O., Liboon S. P., Alcantara J. M. and Cassman K. G. (1996) Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem. 73:556-560.
Prasanta K. S., Takuji S. and Gurdev S. K. (2006) Rice, Cereals and Millets, Springer-Verlag Berlin Heidelberg. pp. 1-5.
Price A. H. (2006) Believe it or not, QTLs are accurate! Trends. Plant Sci. 11:213-216.
Senthilvel S., Vinod K. K., Malarvizhi P. and Maheswaran M. (2008) QTL and QTL × environment effects on agronomic and nitrogen acquisition traits in rice. J. Integr. Plant Bio. 50:1108-1117.
Singh N., Sodhi N.S., Kaur M. and Saxena S.K. (2003) Physico-chemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels. Food Chem. 82:433-439.
Suh J. P., Ahn S. N., Cho Y. C., Kang K. H., Choi I. S., Kim Y. G., Suh H. S. and Hong H. C. (2005) Mapping of QTLs for yield traits using an advanced backcross population from a cross between Oryza sativa and O. glaberrima. Korean J. Breeding 37:214-220.
Tan Y. F., Xing Y. Z., Li J. X., Yu S. B., Xu C. G. and Zhang Q. (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor. Appl. Genet. 101:823-829.
Tan Y. F., Sun M., Xing Y. Z., Hua J. P., Sun X. L., Zhang Q. F. and Corke H. (2001) Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor. Appl. Genet. 103:1037-1045.
Tirol-Padre A., Ladha J.K., Singh U., Laureles E., Punzalan G. and Akita S. (1996) Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res. 46:127-143.
Tong H. H., Chen L., Li W. P., Mei H. W., Xing Y. Z., Yu X. Q., Xu X. Y., Zhang S. Q. and Luo L. J. (2010) Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.). Mol. Breeding:1-15.
Wang S., Basten C. J. and Zeng Z. B. (2011) Windows QTL Cartographer 2.5, Department of Statistics, North Carolina State University, Raleigh, N. C.
Wopereis-Pura M. M., Watanabe H., Moreira J. and Wopereis M. C. S. (2002) Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley. Eur. J. Agron. 17:191-198.
Yan W. H., Wang P., Chen H. X., Zhou H. J., Li Q. P., Wang C. R., Ding Z. H., Zhang Y. S., Yu S. B., Xing Y. Z. and Zhang Q. F. (2010) A Major QTL, Ghd8, Plays Pleiotropic Roles in Regulating Grain Productivity, Plant Height, and Heading Date in Rice. Mol. Plant. 4(2):319-30
Yano M., Kojima S., Takahashi Y., Lin H. and Sasaki T. (2001) Genetic control of flowering time in rice, a short-day Plant. Plant Physiol. 127:1425-1429.
Ye G., Liang S. and Wan J. (2010) QTL mapping of protein content in rice using single chromosome segment substitution lines. Theor. Appl. Genet. 121:741-750.
Yoshida S., Ikegami M., Kuze J., Sawada K., Hashimoto Z., Ishii T., Nakamura C. and Kamijima O. (2002) QTL analysis for plant and grain characters of sake-brewing rice using a doubled haploid population. Breeding Sci. 52:309-317.
Zeng Z. B. (1994) Precision mapping of quantitative trait loci. Genetics 136:1457-1468.
Zhang L., Wang S., Li H., Deng Q., Zheng A., Li S., Li P., Li Z. and Wang J. (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor. Appl. Genet. 121:1071-1082.
Zhou P. H., Tan Y. F., He Y. Q., Xu C. G. and Zhang Q. (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor. Appl. Genet. 106:326-331.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40565-
dc.description.abstract氮肥用量會直接影響水稻產量與品質,本研究目的為探討水稻在不同氮肥用量對產量及米質之影響,以及在不同氮肥用量下產量及米質相關基因之表現。本研究利用台中秈10號與越光雜交所衍生之124個重組自交系族群,分析兩種氮肥用量(80及200公斤/公頃)處理對水稻產量、株高、抽穗期、白堊質發生率、白堊質面積、白堊質指標、蛋白質含量、直鏈性澱粉含量及食味值等9個重要性狀之影響。結果顯示,不同氮肥用量間族群之產量、蛋白質含量及食味值等性狀有顯著差異,而株高則具有顯著之基因型與氮肥用量之交感效應,顯示氮肥用量處理對產量及米質相關性狀具有不同程度之影響。高氮肥與低氮肥用量處理下有部分性狀間維持一致相關趨勢,但亦有性狀間之相關性隨不同氮肥用量處理而改變,顯示氮肥用量的差異可能改變部分基因之表現程度。利用91個SSR與2個InDel分子標誌建立水稻連鎖圖譜,並以綜合區間定位法測定兩種氮肥用量處理下水稻產量及米質之數量性狀基因座(QTL)。結果於第1對、第5對、第6對、第8對、第10對、第11對及第12對染色體上測得相關之QTL,其中控制株高之q-PH6、白堊質發生率之q-CR5、蛋白質含量之q-PC10以及控制食味值之q-TV10在兩種氮肥環境下皆偵測到基因對性狀有顯著影響,顯示這4個QTL較不受氮肥用量影響。而影響水稻株高之q-PH11、抽穗期之q-HD5與q-HD12、蛋白質含量之q-PC12、直鏈性澱粉含量之q-AC1及食味值之q-TV12等6個QTL僅在低氮肥環境下測得;影響產量之q-Y8、白堊質指標之q-CI5、蛋白質含量之q-PC5與q-PC11及食味值之q-TV5與q-TV11等6個QTL僅在高氮肥環境下測得。這些單一氮肥環境下測得相關之QTL容易受氮肥用量影響,也易造成不同氮肥環境下選種及栽培差異。此外,影響食味值之QTL皆與影響蛋白質含量之QTL位於相同之染色體區間,顯示出不同氮肥環境對食味值影響主要為蛋白質含量改變所致。本研究探討不同氮肥環境下測定影響重要農藝性狀基因之位置及其表現,並比較這些基因在不同環境下之表現差異,除了可提供水稻栽培氮肥用量之參考外,並且可以做為分子標誌輔助改良產量及品質之參考。zh_TW
dc.description.abstractRice yield and grain quality could be directly influenced by different nitrogen levels. In order to reveal the quantitative trait loci (QTL) controlling rice yield and grain quality at different nitrogen levels, a recombinant inbred line (RIL) population consisting of 124 lines derived from a cross from varieties Taichung Sen 10 (TCS-10) and Koshihikari was used as materials. In this study, two nitrogen fertilization levels (80 and 200 kg/ha) were applied and nine traits were evaluated, including yield(Y), plant height(PH), days to heading(HD), chalkiness rate(CR), chalkiness area(CA), chalkiness index(CI), protein content(PC), amylose content(AC) and taste value(TV). The results indicated that significant in yield, PC and TV between two nitrogen levels were observed. Furthermore, PH had significant interaction between line (genotype) and nitrogen level. The effects of nitrogen levels on RILs were mainly based on traits. The correlations between traits were deviated under different nitrogen levels. It implied that expression of some QTL controlling rice yield and quality were probably influenced by different nitrogen levels. According to results of CIM (composite interval mapping) with a linkage map composed of 91 SSR and 2 InDel DNA markers, 16 QTL located on rice chromosomes 1, 5, 6, 8, 10, 11 and 12 were detected at two nitrogen levels. Four QTL including q-PH6, qCR5, q-PC10 and q-TV10 were detected at both nitrogen levels, indicating the expression stability of these QTL. However, QTL q-PH11, q-HD5, q-HD12, q-PC12, q-AC1 and q-TV12 were only detected at low nitrogen level; q-Y8, q-CI5, q-PC5, q-PC11, q-TV5 and q-TV11 were only detected at high nitrogen level. The QTL detected in single nitrogen level are easily affected by nitrogen levels, and it will be resulted in selection and cultivation difference under various nitrogen levels. Moreover, QTL controlling protein content and taste value were detected in the same chromosome regions, showing that difference in taste value between nitrogen levels were mainly caused by the change of protein content. This study not only could provide information for nitrogen fertilization application, but also for maker-assisted selection (MAS) on rice breeding.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:51:30Z (GMT). No. of bitstreams: 1
ntu-100-R98621120-1.pdf: 958339 bytes, checksum: b9cd9f69c2c6e2ad42a4f2becd58f2c0 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
表目錄 vii
圖目錄 viii
一、前言 1
二、前人研究 3
三、材料與方法 6
四、結果 11
(一) RIL族群於兩種氮肥用量下之外表性狀分析 11
(二) 兩種氮肥處理下性狀間之相關性測驗 17
(三) 連鎖圖譜之建立 19
(四) 低氮肥處理下之數量性狀基因座定位 19
(五) 高氮肥處理下之數量性狀基因座定位 23
(六) 兩種氮肥用量下數量性狀基因座比較 25
五、討論 28
(一) 重組自交系族群對氮肥處理之反應 28
(二) 兩種氮肥用量下所測得之數量性狀基因座 29
(三) 數量性狀基因座在不同氮肥環境之表現 32
六、結論 33
七、參考文獻 34
dc.language.isozh-TW
dc.subject米質zh_TW
dc.subject水稻zh_TW
dc.subject產量zh_TW
dc.subject數量性狀基因座zh_TW
dc.subject氮肥zh_TW
dc.subjectriceen
dc.subjectquantitative trait locien
dc.subjectgrain qualityen
dc.subjectyielden
dc.subjectnitrogenen
dc.title不同氮肥用量下水稻產量及米質相關基因之表現zh_TW
dc.titleEffects of Different Nitrogen Levels on uantitative Trait Loci Controlling Yield and Grain Quality in Rice (Oryza sativa L.)en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾富生,盧煌勝,賴明信
dc.subject.keyword水稻,氮肥,產量,米質,數量性狀基因座,zh_TW
dc.subject.keywordrice,nitrogen,yield,grain quality,quantitative trait loci,en
dc.relation.page38
dc.rights.note有償授權
dc.date.accepted2011-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
935.88 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved