Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40558
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周賢福(Shyan-Fu Chou)
dc.contributor.authorHsiang-Ju Liuen
dc.contributor.author劉相汝zh_TW
dc.date.accessioned2021-06-14T16:51:16Z-
dc.date.available2010-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citation[1] L. Huang et al., “Long and Oriented Single-Walled Carbon Nanotubes Grown by Ethanol Chemical Vapor Deposition,” J. Phys. Chem. B, Vol.108, No.42, pp.16451 -16456, 2004
[2] Y.H. Yun et al., “Growth Mechanism of Long Aligned Multiwall Carbon Nanotube Arrays by Water-Assisted Chemical Vapor Deposition,” J. Phys. Chem. B, Vol.110, No.47, pp.23920 -23925, 2006
[3] S. Iijima ,” Helical microtubules of graphitic carbon” Nature, Vol. 354, pp.56-58, 1991
[4] A.G. Nasibulin et al., “Correlation between catalyst particle and single-walled carbon nanotube diameters,” Carbon, Vol.43, pp.2251–2257, 2005
[5] X. Liu et al., “Vertically Aligned Dense Carbon Nanotube Growth with Diameter Control by Block Copolymer Micelle Catalyst Templates,” J. Phys. Chem. B, Vol. 110, No. 41, 2006
[6] T. Inoue et al., “Synthesis of diameter-controlled carbon nanotubes using centrifugally classified nanoparticle catalysts,” Carbon, Vol.45, pp. 2164–2170, 2007
[7] J.P. Tu, C.X. Jiang, S.Y. Guo, and M.F. Fu, “Micro-friction characteristics of
aluminum oxide template.” Mate. Lett., Vol.58, pp.1646, 2004
[8] T. Natsuki , M. Endo, “Structural dependence of nonlinear elastic properties for carbon nanotubes using a continuum analysis.” Appl. Phys. A, Vol.80, pp.1463–1468, 2005
[9] D. S. Portal, et al.,” Ab initio structural, elastic, and vibrational properties of carbon nanotubes” Physical Review B, Vol. 59, 1999
[10] M.M.J.Treacy, et al., ”Exceptionally high Young’s modulus observed for individual carbon nanotubes. ”Nature, Vol.381, 1996
[11] E.W. Wong, et al., ” Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes.” Science, Vol. 277, 1997
[12] Salvetat, et al., “Elastic and Shear Moduli of Single-walled Carbon Nanotube Ropes.” Phys. Rev, Lett., Vol.82, pp.944-947, 1999
[13] H.J. Qi, et al., “Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation.” J. Mech. Phys. Solids, Vol.51 , pp.2213 – 2237, 2003
[14] C. M. McCarter, et al., “Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf.” J Mater Sci, Vol.41, pp.7872–7878, 2006
[15] S.D. Mesarovic, et al., “Mechanical behavior of a carbon nanotube turf.” Scripta Materialia, Vol.56, pp.157–160, 2007
[16] A. A. Zbib, et al., “The coordinated buckling of carbon nanotube turfs under uniform compression.” Nanotechnology, Vol.19 ,2008
[17] H. Hertz,et al., Mathematik, Vol. 92, 1882
[18] J. Boussinesq, Application des Potentiels a l’etude de l’equilibre et du movement des solides elastiques, 1885
[19] D. Tabor, “A Simple Theory of Static and Dynamic Hardness .” Proc. R. Soc. A, Vol.192, pp.247-273, 1948
[20] I. N. Sneddon, “The Relation Between Load and Penetration in The Axisymmetric Boussinesq Problem for A Punch of Arbitrary Profile.”Int. J. Engng. Sci., Vol.3, pp.47-57, 1965
[21] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., Vol. 7, No. 6, pp. 1564-1583, 1992.
[22] G. M. Pharr et al., “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,” J. Mater. Res., Vol. 7, No. 3, pp. 613-617, 1992.
[23] J. G. Swadener et al., “The Correlation of the Indentation Size Effect Measured with Indenters of Various Shapes,” J. Mech. Phys. Solids, Vol. 50, pp. 681-694, 2002.
[24] A. A. Elmustafa et al., “Indentation Size Effect in Polycrystalline F.C.C. Metals,” Acta Materialia, Vol. 50, pp. 3641-3650, 2002.
[25] H. T. Yang et al., “A Generalized Load-Penetration Relation for Sharp Indenters and the Indentation Size Effect,” ASME, Vol. 69, pp. 394-396, 2002
[26] B. Y. Farber et al., “Size Effect and Time-Dependent Nanohardness of ZrO2-based Ceramics,” Phys. Solid State, Vol. 43, No. 11, pp. 2105-2109, 2001.
[27] M. I. Baskes et al., “Interpretations of Indentation Size Effects,” ASME, Vol. 69, pp. 433-441, 2002.
[28] W. D. Nix et al., “Indentation Size Effects in Crystalline Materials: A Law for Strain Gradeint Plasticity,” J. Mech. Phys. Solids, Vol. 46, pp. 411-425, 1998
[29] M. V. Swain et al., “Influence of Thickness and Substrate on the Hardness and Deformation of TiN Films,” Thin Solid Films, Vol. 270, pp. 283-288, 1995.
[30] M. V. Swain et al., “Investigation of the Stresses and Stress Intensity Factors Responsible for Fracture of Thin Protective Films during Ultra-micro Indentation Tests with Spherical Indenters,” Thin Solid Films, Vol. 286, pp. 111-121, 1996
[31] S. P. Baker, “Between Nanoindentation and Scanning Force Microscopy: Measuring Mechanical Properties in the Nanometer Regime,” Thin Solid Films, Vol. 308-309, pp. 289-296, 1997.
[32] B. Bhushan, Handbook of Micro/Nanotribology, 2nd Edition, CRC Press, BocaRaton, 1999.
[33] W. D. Nix et al., “Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-sensing Indentation Experiments,” J. Mater. Res., Vol. 13, No. 5, pp. 1300-1306, 1998.
[34] G. M. Pharr et al., “Influences of Pile-up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques,” J. Mater. Res., Vol. 13, No. 4, pp. 1049-1058, 1998.
[35] S. Suresh et al., “Determination of Elasto-plastic Properties by Instrumented Sharp Indentation,” Scripta Materiala, Vol. 40, No. 10, pp. 1191-1198, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40558-
dc.description.abstract近20年來,不論是理論或是實驗研究都一再地證明了奈米碳管有著令人激賞的電子,熱傳以及機械性質。至今,單壁奈米碳管水平奈米碳管以及奈米碳管化合物已經有很多性質被發現並應用於許多地方,例如:奈米尺寸的熱導體,開關,記憶體等電子元件。
我們研究重點在於不同管徑的奈米碳管叢的機械性質。奈米碳管叢尺寸大,成長方式簡便,所以常被應用於微奈米機電元件。也正因為如此,研究奈米碳管叢的整體機械性質,比起單根的奈米碳管更具重要性。
奈米碳管的管徑不論是對於單壁奈米碳管或是多壁奈米碳管研究,都是一個很重要的影響因素,有許多研究都希望能控制這項因素。目前成功的方法有:改變溶液中金屬催化劑的顆粒大小,或者是在特殊的基板上成長奈米碳管,但是這些方法的成本都較高。本研究利用低成本的方式,在矽基板上蒸鍍不同膜厚的鐵催化劑,經過加熱後,形成不同顆粒大小的鐵催化劑,成長不同管徑的奈米碳管。
至於不同管徑以及密度是否會影響奈米碳管叢的整體機械性質,我們在研究中也利用奈米壓印法量測奈米碳管的彈性模數以及硬度,發現管徑越大,機械強度也隨之增加。
zh_TW
dc.description.abstractDesirable electrical, thermal and mechanical properties of carbonnanotubes(CNTs) have fueled a continually growing of theoretical and experimental studies of CNTs in the last 20 years. To data, many properties of single CNTs, horizontal aligned CNTs, and CNT composites have been reported for special applications: thermal conductor, switches and memories in nanoscale electronic devices.
In our research, we focus on the mechanical properties of different diameter of carbon nanotube turf. The wide range of size and large number of carbon nanotube turf grown by chemical vapor deposition are structures for use in microelectronic devices and microelectromechanical systems (MEMS). It is necessary to understand the mechanical properties of carbon nanotube turf rather than a single tube.
The diameter of carbon nanotube is an important factor to influence the single-wall carbon nanotube and the multi-walled carbon nanotube on mechanical properties. Many papers reported that the size of catalyst particles and CNTs grown on special template controlling the diameter of carbon nanotubes. But these methods have a higher cost. In order to reduce the cost of fabricating CNTs, we choose different thickness of iron catalyst, which was formed on top of multilayered substrates of Si/SiO2/Al2O3 by e-beam evaporation. After heating, different size of iron catalyst particle depend on thickness of iron catalyst films. Finally, the different diameters of carbon nanotubes were grown by different size of catalyst particle.
Do the difference diameters of carbon nanotube influence the behavior of an assemblage of CNTs? We measure the mechanical properties of different diameters of carbon nanotube turf using the nanoindentation. The nanoindentation tests reveal that the large diameter exist stronger mechanical properties.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:51:16Z (GMT). No. of bitstreams: 1
ntu-97-R95522109-1.pdf: 7082664 bytes, checksum: 4417095f31e1dabe96a0aa7621923006 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖例目錄 vii
表格目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究動機與目標 3
第二章 文獻回顧 4
2.1奈米碳管結構 4
2.2奈米碳管的製備 6
2.3奈米碳管楊氏模數 8
2.3.1奈米碳管楊氏模數測定 8
2.3.2利用奈米壓痕量測儀進行奈米碳管叢楊氏模數測定 12
2.4奈米壓痕技術 18
2.4.1基礎理論 18
2.4.2實驗誤差因素 24
2.4.2.1基材效應 24
2.4.2.2壓印尺寸效應 24
2.4.2.3表面粗糙效應 27
2.4.2.4黏彈性質效應 27
2.4.2.5熱漂移效應 28
2.4.2.6壓痕邊緣之堆積與下沉效應 29
第三章 實驗流程與設備 31
3.1實驗流程設計 31
3-2試片製程設計 32
3.3化學氣相沉積法成長奈米碳管叢 34
3.4奈米壓痕硬度量測儀 39
3.5 觀察以及量測儀器 42
第四章 實驗結果與討論 45
4.1奈米碳管叢成長參數討論 45
4.1.1奈米碳管叢成長高度 45
4.1.2奈米碳管叢之奈米碳管管徑 47
4.1.3奈米碳管叢表面粗糙度 51
4.1.4奈米碳管叢密度 53
4.2奈米碳管叢機械性質分析 55
4.2.1奈米碳管叢高度與機械強度 58
4.2.2奈米碳管管徑與機械強度 60
4.3結果討論 63
第五章 結論與未來展望 69
5.1結論 69
5.2未來展望 71
參考文獻 72
dc.language.isozh-TW
dc.title以奈米壓痕法量測不同催化劑薄膜厚度以成長不同管徑的奈米碳管叢之機械性質zh_TW
dc.titleMechanical property of different diameters of nanotube turfs with different catalyst films using nanoindentationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張所鋐(Shuo-Hung Chang),施文彬(Wen-Pin Shih)
dc.subject.keyword奈米碳管叢,管徑,催化劑,奈米壓印,機械性質,zh_TW
dc.subject.keywordCarbon nanotube turf,Diameter,Catalyst,Nanoindentation,Mechanical property,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
6.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved