Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40550
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慧羽
dc.contributor.authorSung-han Linen
dc.contributor.author林嵩翰zh_TW
dc.date.accessioned2021-06-14T16:51:00Z-
dc.date.available2011-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citationBachtrog, D. 2006a. The speciation history of the Drosophila nasuta complex. Genet Res 88:13-26.
Bachtrog, D. 2006b. A dynamic view of sex chromosome evolution. Current Opinion in Genetics & Development 16:578-585.
Bachtrog, D. 2005. Sex chromosome evolution: molecular aspects of Y-chromosome degeneration in Drosophila. Genome Res 15:1393-1401.
Bachtrog, D., and B. Charlesworth. 2002. Reduced adaptation of a non-recombining neo-Y chromosome. Nature 416:323-326.
Baker, B. S., M. Gorman, and I. Marin. 1994. Dosage Compensation in Drosophila. Annual Review of Genetics 28:491-521.
Bone, J. R., and M. I. Kuroda. 1996. Dosage compensation regulatory proteins and the evolution of sex chromosomes in Drosophila. Genetics 144:705-713.
Chang, H.-H. 2008a. On evolutionary importance of genetic recombination from molecular aspects. Pp. 109. Institute of Biotechnology Narional Tsing Hua University, HsinChu.
Chang, H., and Y. Tai. 2007. Asymmetrical Reproductive Isolation between Drosophila albomicans and D. nasuta. zoological studies 46:638-646.
Chang, H. Y., D. G. Wang, and F. J. Ayala. 1989. Mitochondrial DNA evolution in the Drosophila nasuta subgroup of species. J Mol Evol 28:337-348.
Chang, T. P. 2008b. Evolution of neo-sex chromosomes in Drosophila albomicans. National Taiwan University, Taipei.
Chang, T. P., T. H. Tsai, and H. Chang. 2008. Fusions of Muller’s elements during the chromosome evolution of Drosophila albomicans. zoological studies.
Coyne, J. A., and H. A. Orr. 1997. Patterns of speciation in Drosophila revisited. Evolution 51:295-303.
Coyne, J. A., and H. A. Orr. 1989. Patterns of Speciation in Drosophila. Evolution:362-381.
Da Lage, J.-L., E. Renard, F. Chartois, F. Lemeunier, and M.-L. Cariou. 1998. Amyrel, a paralogous gene of the amylase gene family in Drosophila melanogaster and the Sophophora subgenus. Proceedings of the National Academy of Sciences 95:6848-6853.
Dahlsveen, I. K., G. D. Gilfillan, V. I. Shelest, R. Lamm, and P. B. Becker. 2006. Targeting Determinants of Dosage Compensation in Drosophila. PLoS Genetics 2:e5.
Duda, V. O. 1940. Revision der afrikanischen Drosophiliden (Diptera). 11. Ann. Hist.-Nat. Mus. Narl. Hung. 33:19-53.
Fagegaltier, D., and B. S. Baker. 2004. X chromosome sites autonomously recruit the dosage compensation complex in Drosophila males. PLoS Biol 2:e341.
Fos, M., M. A. Dominguez, A. Latorre, and A. Moya. 1990. Mitochondrial DNA evolution in experimental populations of Drosophila subobscura. Proc Natl Acad Sci USA 87:4198-4201.
Ghosh, S., J. C. Luechesi, and J. E. Manning. 1992. The non-dosage compensated LSP1-alpha gene of Drosophila melanogaster lies immediately downstream of the dosage compensated L12 gene. Molecular & general genetics 233:49-52.
Haldane, J. B. S. 1922. Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics 12:101-109.
Hamada, F. N., P. J. Park, P. R. Gordadze, and M. I. Kuroda. 2005. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev 19:2289-2294.
Hutter, C. M., and D. M. Rand. 1995. Competition between mitochondrial haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs. D. persimilis. Genetics 140:537-548.
James, A. C., and J. W. Ballard. 2003. Mitochondrial genotype affects fitness in Drosophila simulans. Genetics 164:187-194.
Johnson, N. A., D. E. Perez, E. L. Cabot, H. Hollocher, and C.-I. Wu. 1992. A test of reciprocal X-Y interactions as a cause of hybrid sterility in Drosophila. Nature 358:751-753.
Kageyama, Y., G. Mengus, G. Gilfillan, H. G. Kennedy, C. Stuckenholz, R. L. Kelley, P. B. Becker, and M. I. Kuroda. 2001. Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site. The EMBO Journal 20:2236-2245.
Kopp, A. 2006. Basal relationships in the Drosophila melanogaster species group. Molecular Phylogenetics and Evolution 39:787-798.
Lemos, B., L. O. Araripe, and D. L. Hartl. 2008. Polymorphic Y Chromosomes Harbor Cryptic Variation with Manifold Functional Consequences. Science 319:91-93.
Lin, S. H., Y. Y. Huang, and H. Chang. 2008. Cooption of neo-X and neo-Y chromosome in Drosophila albomicans. zoological studies 47.
Marin, I., A. Franke, G. J. Bashaw, and B. S. Baker. 1996. The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383:160-163.
Morgan, T. H. 1912. Complete linkage in the second chromosome of the male of Drosophila. Science 36:719-720.
Morgan, T. H. 1914. No crossing over in the male of Drosophila of genes in the second and third pairs of chromosomes. The Biological bulletin., Woods Hole 26:195-204.
Mukherjee, A. S., and W. Beermann. 1965. Synthesis of Ribonucleic Acid by the X-Chromosomes of Drosophila melanogaster and the Problem of Dosage Compensation. Nature 207:785-786.
Muller, H. J. 1918. Genetic Variability, Twin Hybrids and Constant Hybrids, in a Case of Balanced Lethal Factors. Genetics 3:422-499.
Muller, H. J. 1932. Some genetic aspects of sex. The American Naturalist 66:138.
Orr, H. A. 1997. Haldane's rule. Annu. Rev. Ecol. Syst. 28:195-218.
Reeve, E. C. R. 1950. Genetical Aspects of Size Allometry. Proceedings of the Royal Society of London. Series B, Biological Sciences 137:515-518.
Rice, W. R., and U. Friberg. 2008. GENETICS: Functionally Degenerate--Y Not So? Science 319:42-43.
Rice, W. R., and S. D. Gaines. 1994a. The Ordered-Heterogeneity Family of Tests. Biometrics 50:746-752.
Rice, W. R., and S. D. Gaines. 1994b. Extending nondirectional heterogeneity tests to evaluate simply ordered alternative hypotheses. Proc Natl Acad Sci USA 91:225-226.
Sackton, T. B., R. A. Haney, and D. M. Rand. 2003. Cytonuclear coadaptation in Drosophila: disruption of cytochrome c oxidase activity in backcross genotypes. Evolution 57:2315-2325.
Singh, B. N., and R. Banerjee. 1996. Spontaneous recombination in males of Drosophila bipectinata. Journal of Biosciences 21:775-779.
Steinemann, M., S. Steinemann, and F. Lottspeich. 1993. How Y Chromosomes Became Genetically Inert. Proceedings of the National Academy of Sciences 90:5737-5741.
Steinemann, S., and M. Steinemann. 2007. Evolution of sex chromosomes: dosage compensation of the Lcp1-4 gene cluster on the evolving neo-X chromosome in Drosophila miranda. Insect Molecular Biology 16:167-174.
Steinemann, S., and M. Steinemann. 2005. Y chromosomes: born to be destroyed. Bioessays 27:1076-1083.
Straub, T., and P. B. Becker. 2007. Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8:47-57.
Straub, T., G. D. Gilfillan, V. K. Maier, and P. B. Becker. 2005. The Drosophila MSL complex activates the transcription of target genes. Genes Dev 19:2284-2288.
Tai, Y. 2005. The asymmetrical reproductive isolation of Drosophila albomicans and D. nasuta. Pp. 41. Entomology. National Taiwan University, Taipei.
Tsai, T. H. 2008. phylogeny of D. albomicans. National Taiwan University, Taipei.
Turelli, M., and L. C. Moyle. 2007. Asymmetric postmating isolation: Darwin's corollary to Haldane's rule. Genetics 176:1059-1088.
Wilson, F. D., M. R. Wheeler, M. Harget, and M. Kambysellis. 1969. Cytogenetic relations in the Drosophila nasuta subgroup of the immigrans group of species. Univ. TX Publ. 6918:207-254.
Wu, C. I., N. A. Johnson, and M. F. Palopoli. 1996. Haldane's rule and its legacy: Why are there so many sterile males? Trends in Ecology & Evolution 11:281-284.
Yang, Y. Y., C. Y. Lee, Y. H. Yang, S. P. Huang, T. P. Chang, and H. Chang. 2007. The fate of neo-sex chromosomes in Drosophila albomicans - nasuta hybrid populations. zoological studies 47:84-95.
Yang, Y. Y., F. J. Lin, and H. Chang. 2004. Sex ratio distortion in hybrids of Drosophila albomicans and D. nasuta. zoological studies 43:622-628.
Yu, Y.-C., F.-J. Lin, and H.-Y. Chang. 1999. Stepwise chromosome evolution in Drosophila albomicans. Heredity 83:39-45.
Yu, Y. C., F. J. Lin, and H. Chang. 1999. Stepwise chromosome evolution in Drosophila albomicans. Heredity 83:39-45.
Yu, Y. C., F. J. Lin, and H. y. Chang. 1997. Karyotype polymorphism in hybrid populations of Drosophila nasuta and D. albomicans. zoological studies 36:251-259.
Zhou, Q., J. Wang, L. Huang, W.-h. Nie, J.-h. Wang, Y. Liu, X.-y. Zhao, F.-t. Yang, and W. Wang. 2008. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biology 9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40550-
dc.description.abstract果蠅屬中的一對新興同胞種:紅果蠅與輝顏果蠅 (分歧時間少於50萬年)能交配並產生可孕後代,來自於紅果蠅雄蟲與輝顏果蠅雌蟲雜交之後代雄蟲體型明顯的小於親代,然而來自於輝顏果蠅雄蟲與紅果蠅雌蟲所產生之後代雄蟲則呈現預期的體型大小。藉由將體型明顯偏小的雜交雄蟲分別與兩個親代物種的雌蟲進行回交得到第二子代雄蟲,其一維持和該雜交雄蟲相同的性染色體組合,另一獲得和紅果蠅相同的性染色體組合。前者之體型依舊,然後者之體型恢復正常,顯示紅果蠅新 X 染色體與新 Y 染色體間的相互依存配合的共演化關係。已知果蠅雄蟲缺乏重組,因此新 Y 染色體的退化成為 Y 染色體是無可避免的命運。在紅果蠅新 Y 染色體上之Amyrel 基因座具有一個帶有框架移轉缺失 (frameshift deletion) 的 Amyreld 對偶因子 (allele),在種內多態 (polymorphic) 存在。在基因表現上,帶有 Amyreld 之品系其劑量補償現象 (亦即新 X 染色體出現了增加表現而新 Y 染色體則減少表現) 也是多態存在。在果蠅屬中多數物種,包括D. miranda 一個同樣具有新性染色體的物種,顯示區塊式 (block-by-block) 的劑量補償機制。在紅果蠅,在整個三號染色體上隨機的測試數個基因的表現模式包含一個鄰近於 Amyrel 的基因的表現模式並無顯示出支持紅果蠅的劑量補償是以區塊做為單位的方式進行。我們認為特定基因式的劑量補償機制可能是在 Y 染色體退化的極早期先出現,而區塊式的補償方式則是在 Y 染色體退化日漸嚴重後取而代之的機制。紅果蠅的極短分歧時間提供絕佳的機會以了解性染色體在極早期的演化過程。zh_TW
dc.description.abstractDrosophila albomicans and D. nasuta are recently (< 0.5 MYA) diverged sibling species. The hybrid progeny are fertile but the hybrid males from a cross between D. nasuta females and D. albomicans males showed a significantly smaller body size comparing to parental species, but either F1 males from the reciprocal cross or F1 females from both crosses were normal. By backcrossing the F1 males to the two parental species, the F2 male body size of one cross remained the same while that of the other, which regained the neo-X for its neo-Y, increased. This supported the hypothesis of the cooption between the neo-X and neo-Y chromosomes of D. albomicans. For lack of recombination in Drosophila males, degeneration is an unavoidable fate for Y chromosomes. A polymorphic Amyrel locus in D. albomicans has a neo-Y allele with a frame-shift deletion (Amyreld), this could be regarded as a degenerated Y-linked allele. The expression pattern of it in some strains with Amyreld showed a dosage compensation phenomenon but it was polymorphic in populations. Drosophila species including D. miranda, another species with neo-sex chromosomes, are commonly observed to follow the block-by-block dosage compensation model. After examining loci sampled from the whole chromosome arm including one close to Amyrel, it’s found that D. albomicans may not adopt the same mechanism as the older species D. miranda (ca. 1 MY) does. We proposed that the gene-by-gene mechanism may emerge at the very early stage of Y chromosome degeneration. While the degeneration was more serious, the block-by-block mechanism might be advantageous and replace the original multiple gene-by-gene mechanisms. The very short divergence time of D. albomicans provides a great chance to explore sex chromosome evolution at a very early stage.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:51:00Z (GMT). No. of bitstreams: 1
ntu-97-R95632007-1.pdf: 1325951 bytes, checksum: d3497cf744d02ba35e51cfad46b121e9 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChinese abstract (中文摘要) i
Abstract ii
Table of content iv
Chapter 1 Cooption of neo-X and neo-Y chromosomes in Drosophila albomicans 1
Introduction 1
Materials and Methods 4
Drosophila isofemale strains 4
Crosses and hybrids 5
Establishment of coupled D. albomicans strains with homogeneous nDNA but different mtDNA 6
Establishment of coupled D. nasuta strains 8
Reproductive ability of the coupled strains 9
Measurement of wing length 9
Data and statistical analyses 9
Results 11
Wing length of hybrids 11
Wing length of coupled inbred strains 13
Backcrosses of Ha1 males to females of both parental species 16
Discussion 18
Chapter 2 Dosage compensation of neo-X chromosome in Drosophila albomicans 24
Introduction 24
Materials and Methods 27
Drosophila isofemale strains 27
Total RNA and genomic DNA (gDNA) extraction from the same single fly 28
Single strand complementary DNA (cDNA) synthesis 30
PCR and restriction: 31
Expression patterns of sexual difference 32
The Amyrel deletion allele (Amyreld) 34
Results 36
The expression patterns of loci along the 3rd chromosome 36
Expression of Amyrel genes in the strain without Amyreld allele 39
Quantification expression of Amyrel and Amyreld in males 41
Expression of the a427 locus between two genders 43
Discussion 44
References 51
Appendix 56
A. Single fly total RNA extraction: 56
B. Single fly genomic DNA extraction: 59
C. Single strand complementary DNA (cDNA) synthesis 61
D. Primer information and restriction enzyme 62
dc.language.isoen
dc.title紅果蠅新Y染色體對新X染色體之依存zh_TW
dc.titleCooption of neo-X and neo-Y chromosome in Drosophila albomicansen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王重雄,丁照棣,于宏燦
dc.subject.keyword退化,劑量補償,Y 染色體,zh_TW
dc.subject.keywordDegeneration,dosage compensation,neo-Y chromosome,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved