Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧中仁(Lu, Chung-Jen, Ph.D.)
dc.contributor.author"Cheng, Wen-Yang"en
dc.contributor.author鄭文揚zh_TW
dc.date.accessioned2021-06-14T16:50:57Z-
dc.date.available2008-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation[1] M.K. Yoon, D. Heider, J.W. Gillespie, C.P. Ratcliffe, R.M. Crane, 2005, “Local
damage detection using the two-dimensional gapped smoothing method,” Journal of
Sound and Vibration, Vol. 279, No.1–2, pp.119–139.
[2]夏紀真,1988,”無損檢測導論”,勞動部鍋爐壓力容器安全雜誌
[3] E.P. Carden, P. Fanning, 2004, “Vibration based condition monitoring: A review”,
Structural Health Monitoring, Vol.3(4), pp 355–377.
[4] H. Van der Auweraer, 2001,” International research projects on structural damage
detection”, Damage Assessment of Structures Key Engineering Materials , Vol.204,
No.2, pp 97–112.
[5] Z.Y. Shi, S.S. Law, L.M. Zhang, 2000 ,”Structural damage detection from modal strain
energy change”, Journal of Engineering Mechanics-ASCE , Vol.126, No.12, pp
1216–1223.
[6] W. Gawronski, J.T. Sawicki, 2000,”Structural damage detection using modal norms”,
Journal of Sound and Vibration Vol.229, No.1, pp 194–198.
[7] G. Kawiecki, 2001,” Modal damping measurement for damage detection”, Smart
Materials & Structures, Vol.10, No.3, pp 466–471.
[8] Z.Y. Shi, S.S. Law, L.M. Zhang, 2002 ,”Improved damage quantification from
elemental modal strain energy change”, Journal of Engineering Mechanics-ASCE
Vol.128, No.5, pp 521–529.
[9] M.A.B. Abdo, M. Hori, 2002,” A numerical study of structural damage detection using
changes in the rotation of mode shapes”, Journal of Sound and Vibratio , Vol.251,
No.2, pp 227–239.
[10] R.P.C. Sampaio, N.M.M. Maia, J.M.M. Silva, 2003,” The frequency domain assurance
criterion as a tool for damage detection”, Damage Assessment of Structures,
Proceedings Key Engineering Materials, Vol.245, No.2, pp 69–76.
[11] F. Vestroni, D. Capecchi, 2000,”Damage detection in beam structures based on
frequency measurements”, J. Eng. Mech., Vol.126, pp 761–768.
[12] Y.S. Lee, M.J. Chung, 2000,” A study on crack detection using eigenfrequency test
data”, Computers & Structures, Vol.77, No.3, pp 327–342.
[13] J.T. Kim, Y.S. Ryu, H.M. Cho, N. Stubbs, 2003,” Damage identification in beam-type
structures: frequency-based method vs. mode-shape-based Method”, Engineering
Structures, Vol.25, No.1, pp 57–67.
[14] L.M. Khoo, P.R. Mantena, P. Jadhav, 2004”Structural damage assessment using
vibration modal analysis”, Structural Health Monitoring, Vol.3, No.2 , pp 177–194.
[15]. Ju, F. D. and Mimovich, M., 1986 ,”Modal frequency method in diagnosis of fracture
damage in structures”, in Proceedings, 4th International Modal Analysis Conference,
Los Angeles, Vol. 2, pp 1168-1174.
[16]. Ju, F. D. and Mimovich, M.,1987, “Experimental diagnosis of fracture damage in
structures by the modal frequency method” in Modal Testing and Analysis (edited T.
G. Came and J. C. Simonis), pp 29-36.
[17] A.M. Yan, J.C. Golinval, 2005,”Structural damage localization by combining
flexibility and stiffness methods”, Engineering Structures Vol.27, No.12 , pp
1752–1761.
[18] A. Furukawa, H. Otsuka, J. Kiyono, 2006, “Structural damage detection method using
uncertain frequency response functions”, Computer-Aided Civil And Infrastructure
Engineering Vol.21, No.4, pp 292–305.
[19] S. Rajasekaran, S.P. Varghese, 2005,” Damage detection in beams and plates using
wavelet transforms”, Computers and Concrete Vol.2, No.6, pp 481–498.
[20] C.J. Lu, Y.T. Hsu, 2002,”Vibration analysis of an inhomogeneous string for damage
detection by wavelet transform”, International Journal of Mechanical Sciences Vol.
44, No.4, pp 745–754.
[21]Cooley, J. W., and Turkey, J. W, 1965, “An Algorithm for the Machine Calculation of
Complex Fourier Series”, Mathematics of Computation, Vol. 19, Issue 90, pp 297-201.
[22]Veltcheva, A. D.,2001,” Wave groupiness in the near shore by Hilbert
spectrum”,Proc.4th Int. Symp. Ocean Wave Meas. Anal. (WAVES 2001), San Francisco,
pp 367-376.
[23]Veltcheva, A. D, 2002,” Wave and group transformation by a Hilbert spectrum”,
Coastal Eng. J. Vol. 44, No. 4, pp 289-300.
[24]Echeverria, J.C., Crowe, J.A., Woolfson, M. S. HayesGill, B. R., 2001,” Application of
empirical mode decomposition to heart rate variability analysis”, Med. Eng. Comput.
Vol.39, No.4 , pp 471-479.
[25]Chen, K. Y., Yeh, H. C., Su, S. Y., Liu, C.H., Huang, N.E., 2001,” Anatomy of plasma
structures in an equatorial spread F event”, Geophys. Res. Lett. Vol. 28, No.16, pp.
3107-3110.
[26]Komm, R. W., Hill, F., Howe, R., 2001,” Empirical mode decomposition and Hilbert
analysis applied to rotation residuals of the solar convection zone”, Astrophys. J.
Vol.558, No.1, pp 428-441.
[27]Huang, N. E., Shen, Z., Lomg, S. R., Wu, M. C., Shih, S. H., Zheng, Q., Tung, C. C.,
and Liu, H. H., 1998, “The Empirical Mode Decomposition and the Hilbert Spectrum
for Nonlinear and Non-stationary Time Series Analysis”, Proceedings of the Royal
Society A, Vol.454, No.1971/March 08, pp 903-955.
[28]Cohen, L., 1995, “Time-Frequency Analysis, New Jersey”, Prentice Hall.
[29]Schwartz, M., Bennett, W. R., and Stein, S., 1966, “Communications Systems and
Techniques”, New York, McGraw-Hill.
[30]Rice, s. o., 1994, “Mathematical Analysis of Random Noise”, Bell System Technical
Journal, No. 23,pp. 282-310
[31]Gabor, D., 1953, “Communication Theory and Physics”, IEEE Transactions on
Information Theory, Vo. 1, No. 1, pp 48-59
[32]Bedrosian, E., 1963, “A Product Theorem for Hilbert Transforms”, Proceedings of the
IEEE, Vol.51, No. 5, pp 868-869.
[33]Huang, N. E.,Z. Shen, R. S. Long, 1999, “A new view of nonlinear water waves – the
Hilbert spectrum”, Ann. Rev. Fluid Mech., Vol.31, pp 417-457.
[34]Huang, N. E., M. L. Wu, S. R.Long, S. S. Shen, W. D. Qu, p. Gloersen, and K. L. Fan,
2003, “A confidence limit for the empirical mode decomposition and the Hilbert
spectral analysis”, Proc, of Roy. Soc. London, Vo. 459A, pp 2317-2345
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40548-
dc.description.abstract機械結構的早期損傷預測一直是工業界的重要課題,常見的方法之ㄧ是分析結構的振動訊號,希望由振動訊號的變異得知結構有無損傷,甚至推估得可能的損傷位置。要達到這個目的,必需有適當的訊號處理方法,這個方法需具備良好的解析度和靈敏度以便偵測早期局部微小的損傷。近年來迅速發展的Hilbert-Huang Transform (HHT) 可能提供了一個有效的訊號分析方法。本文主要探討HHT的特性及其在結構損傷偵測的應用。為了簡化問題,用簡支樑代表待偵測的結構,以附加的彈簧代表結構損傷處。利用HHT處理樑的振動訊號,由HHT頻譜的變化判別彈簧存在與否。zh_TW
dc.description.abstractThe structural damage detection of mechanical structures in the early stage is an important research subject. A commonly used method for this purpose is based on the analysis of the structural vibration signals. Theoretically, the existence and location of the damage can be detected from the variation of the vibration signals. To this end, a proper method for vibration signal process is indispensable. The signal process method should exhibit high resolution and sensitivity for the detection of minor localized damage in the early stage. The Hilbert-Huang Transform (HHT), which has been successfully applied to many different fields in the last ten years, may provide a promising method for this purpose. This thesis studies the properties of HHT and the feasibility of its application to structural damage detection. To simplify the problem, we consider an extremely simply system - a simply supported beam. The damage of the system is represented by a spring with negative stiffness. The vibration signals of the beam with and without the damage are processed by the HHT. The existence of the damage can be identified from the change of the HHT spectra.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:50:57Z (GMT). No. of bitstreams: 1
ntu-97-R95522518-1.pdf: 14255324 bytes, checksum: 9590c47eeb5674d84e031897d4f695b9 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝Ⅰ
中文摘要Ⅱ
英文摘要Ⅲ
目錄Ⅳ
圖目錄Ⅴ
表目錄Ⅸ
第一章 序論1
1-1 研究動機1
1-2 研究背景3
第二章 希伯特-黃轉換5
2-1 希伯特轉換5
2-2 經驗模態分解法6
2-3 希伯特頻譜與邊際頻譜9
2-4 模擬訊號分析10
2-4-1 平穩訊號10
2-4-2 非平穩訊號13
第三章 針對簡支樑的數值模擬35
3-1 數值模擬方法35
3-2 數值運算36
3-2-1取樣頻率的選用37
3-2-2外加彈簧勁度的影響44
3-2-3外加彈簧位置的影響72
3-2-3非定常系統73
第四張 結論77
參考文獻78
dc.language.isozh-TW
dc.subject結構損壞檢測zh_TW
dc.subject希伯特-黃轉換zh_TW
dc.subjectHHTen
dc.subjectDetection of Structural Damageen
dc.titleHHT於結構損壞檢測的應用zh_TW
dc.titleApplication of HHT to Detection of Structural Damageen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳明新,伍次寅
dc.subject.keyword希伯特-黃轉換,結構損壞檢測,zh_TW
dc.subject.keywordHHT,Detection of Structural Damage,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
13.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved