請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40548完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧中仁(Lu, Chung-Jen, Ph.D.) | |
| dc.contributor.author | "Cheng, Wen-Yang" | en |
| dc.contributor.author | 鄭文揚 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:50:57Z | - |
| dc.date.available | 2008-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | [1] M.K. Yoon, D. Heider, J.W. Gillespie, C.P. Ratcliffe, R.M. Crane, 2005, “Local
damage detection using the two-dimensional gapped smoothing method,” Journal of Sound and Vibration, Vol. 279, No.1–2, pp.119–139. [2]夏紀真,1988,”無損檢測導論”,勞動部鍋爐壓力容器安全雜誌 [3] E.P. Carden, P. Fanning, 2004, “Vibration based condition monitoring: A review”, Structural Health Monitoring, Vol.3(4), pp 355–377. [4] H. Van der Auweraer, 2001,” International research projects on structural damage detection”, Damage Assessment of Structures Key Engineering Materials , Vol.204, No.2, pp 97–112. [5] Z.Y. Shi, S.S. Law, L.M. Zhang, 2000 ,”Structural damage detection from modal strain energy change”, Journal of Engineering Mechanics-ASCE , Vol.126, No.12, pp 1216–1223. [6] W. Gawronski, J.T. Sawicki, 2000,”Structural damage detection using modal norms”, Journal of Sound and Vibration Vol.229, No.1, pp 194–198. [7] G. Kawiecki, 2001,” Modal damping measurement for damage detection”, Smart Materials & Structures, Vol.10, No.3, pp 466–471. [8] Z.Y. Shi, S.S. Law, L.M. Zhang, 2002 ,”Improved damage quantification from elemental modal strain energy change”, Journal of Engineering Mechanics-ASCE Vol.128, No.5, pp 521–529. [9] M.A.B. Abdo, M. Hori, 2002,” A numerical study of structural damage detection using changes in the rotation of mode shapes”, Journal of Sound and Vibratio , Vol.251, No.2, pp 227–239. [10] R.P.C. Sampaio, N.M.M. Maia, J.M.M. Silva, 2003,” The frequency domain assurance criterion as a tool for damage detection”, Damage Assessment of Structures, Proceedings Key Engineering Materials, Vol.245, No.2, pp 69–76. [11] F. Vestroni, D. Capecchi, 2000,”Damage detection in beam structures based on frequency measurements”, J. Eng. Mech., Vol.126, pp 761–768. [12] Y.S. Lee, M.J. Chung, 2000,” A study on crack detection using eigenfrequency test data”, Computers & Structures, Vol.77, No.3, pp 327–342. [13] J.T. Kim, Y.S. Ryu, H.M. Cho, N. Stubbs, 2003,” Damage identification in beam-type structures: frequency-based method vs. mode-shape-based Method”, Engineering Structures, Vol.25, No.1, pp 57–67. [14] L.M. Khoo, P.R. Mantena, P. Jadhav, 2004”Structural damage assessment using vibration modal analysis”, Structural Health Monitoring, Vol.3, No.2 , pp 177–194. [15]. Ju, F. D. and Mimovich, M., 1986 ,”Modal frequency method in diagnosis of fracture damage in structures”, in Proceedings, 4th International Modal Analysis Conference, Los Angeles, Vol. 2, pp 1168-1174. [16]. Ju, F. D. and Mimovich, M.,1987, “Experimental diagnosis of fracture damage in structures by the modal frequency method” in Modal Testing and Analysis (edited T. G. Came and J. C. Simonis), pp 29-36. [17] A.M. Yan, J.C. Golinval, 2005,”Structural damage localization by combining flexibility and stiffness methods”, Engineering Structures Vol.27, No.12 , pp 1752–1761. [18] A. Furukawa, H. Otsuka, J. Kiyono, 2006, “Structural damage detection method using uncertain frequency response functions”, Computer-Aided Civil And Infrastructure Engineering Vol.21, No.4, pp 292–305. [19] S. Rajasekaran, S.P. Varghese, 2005,” Damage detection in beams and plates using wavelet transforms”, Computers and Concrete Vol.2, No.6, pp 481–498. [20] C.J. Lu, Y.T. Hsu, 2002,”Vibration analysis of an inhomogeneous string for damage detection by wavelet transform”, International Journal of Mechanical Sciences Vol. 44, No.4, pp 745–754. [21]Cooley, J. W., and Turkey, J. W, 1965, “An Algorithm for the Machine Calculation of Complex Fourier Series”, Mathematics of Computation, Vol. 19, Issue 90, pp 297-201. [22]Veltcheva, A. D.,2001,” Wave groupiness in the near shore by Hilbert spectrum”,Proc.4th Int. Symp. Ocean Wave Meas. Anal. (WAVES 2001), San Francisco, pp 367-376. [23]Veltcheva, A. D, 2002,” Wave and group transformation by a Hilbert spectrum”, Coastal Eng. J. Vol. 44, No. 4, pp 289-300. [24]Echeverria, J.C., Crowe, J.A., Woolfson, M. S. HayesGill, B. R., 2001,” Application of empirical mode decomposition to heart rate variability analysis”, Med. Eng. Comput. Vol.39, No.4 , pp 471-479. [25]Chen, K. Y., Yeh, H. C., Su, S. Y., Liu, C.H., Huang, N.E., 2001,” Anatomy of plasma structures in an equatorial spread F event”, Geophys. Res. Lett. Vol. 28, No.16, pp. 3107-3110. [26]Komm, R. W., Hill, F., Howe, R., 2001,” Empirical mode decomposition and Hilbert analysis applied to rotation residuals of the solar convection zone”, Astrophys. J. Vol.558, No.1, pp 428-441. [27]Huang, N. E., Shen, Z., Lomg, S. R., Wu, M. C., Shih, S. H., Zheng, Q., Tung, C. C., and Liu, H. H., 1998, “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis”, Proceedings of the Royal Society A, Vol.454, No.1971/March 08, pp 903-955. [28]Cohen, L., 1995, “Time-Frequency Analysis, New Jersey”, Prentice Hall. [29]Schwartz, M., Bennett, W. R., and Stein, S., 1966, “Communications Systems and Techniques”, New York, McGraw-Hill. [30]Rice, s. o., 1994, “Mathematical Analysis of Random Noise”, Bell System Technical Journal, No. 23,pp. 282-310 [31]Gabor, D., 1953, “Communication Theory and Physics”, IEEE Transactions on Information Theory, Vo. 1, No. 1, pp 48-59 [32]Bedrosian, E., 1963, “A Product Theorem for Hilbert Transforms”, Proceedings of the IEEE, Vol.51, No. 5, pp 868-869. [33]Huang, N. E.,Z. Shen, R. S. Long, 1999, “A new view of nonlinear water waves – the Hilbert spectrum”, Ann. Rev. Fluid Mech., Vol.31, pp 417-457. [34]Huang, N. E., M. L. Wu, S. R.Long, S. S. Shen, W. D. Qu, p. Gloersen, and K. L. Fan, 2003, “A confidence limit for the empirical mode decomposition and the Hilbert spectral analysis”, Proc, of Roy. Soc. London, Vo. 459A, pp 2317-2345 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40548 | - |
| dc.description.abstract | 機械結構的早期損傷預測一直是工業界的重要課題,常見的方法之ㄧ是分析結構的振動訊號,希望由振動訊號的變異得知結構有無損傷,甚至推估得可能的損傷位置。要達到這個目的,必需有適當的訊號處理方法,這個方法需具備良好的解析度和靈敏度以便偵測早期局部微小的損傷。近年來迅速發展的Hilbert-Huang Transform (HHT) 可能提供了一個有效的訊號分析方法。本文主要探討HHT的特性及其在結構損傷偵測的應用。為了簡化問題,用簡支樑代表待偵測的結構,以附加的彈簧代表結構損傷處。利用HHT處理樑的振動訊號,由HHT頻譜的變化判別彈簧存在與否。 | zh_TW |
| dc.description.abstract | The structural damage detection of mechanical structures in the early stage is an important research subject. A commonly used method for this purpose is based on the analysis of the structural vibration signals. Theoretically, the existence and location of the damage can be detected from the variation of the vibration signals. To this end, a proper method for vibration signal process is indispensable. The signal process method should exhibit high resolution and sensitivity for the detection of minor localized damage in the early stage. The Hilbert-Huang Transform (HHT), which has been successfully applied to many different fields in the last ten years, may provide a promising method for this purpose. This thesis studies the properties of HHT and the feasibility of its application to structural damage detection. To simplify the problem, we consider an extremely simply system - a simply supported beam. The damage of the system is represented by a spring with negative stiffness. The vibration signals of the beam with and without the damage are processed by the HHT. The existence of the damage can be identified from the change of the HHT spectra. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:50:57Z (GMT). No. of bitstreams: 1 ntu-97-R95522518-1.pdf: 14255324 bytes, checksum: 9590c47eeb5674d84e031897d4f695b9 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝Ⅰ
中文摘要Ⅱ 英文摘要Ⅲ 目錄Ⅳ 圖目錄Ⅴ 表目錄Ⅸ 第一章 序論1 1-1 研究動機1 1-2 研究背景3 第二章 希伯特-黃轉換5 2-1 希伯特轉換5 2-2 經驗模態分解法6 2-3 希伯特頻譜與邊際頻譜9 2-4 模擬訊號分析10 2-4-1 平穩訊號10 2-4-2 非平穩訊號13 第三章 針對簡支樑的數值模擬35 3-1 數值模擬方法35 3-2 數值運算36 3-2-1取樣頻率的選用37 3-2-2外加彈簧勁度的影響44 3-2-3外加彈簧位置的影響72 3-2-3非定常系統73 第四張 結論77 參考文獻78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 結構損壞檢測 | zh_TW |
| dc.subject | 希伯特-黃轉換 | zh_TW |
| dc.subject | HHT | en |
| dc.subject | Detection of Structural Damage | en |
| dc.title | HHT於結構損壞檢測的應用 | zh_TW |
| dc.title | Application of HHT to Detection of Structural Damage | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳明新,伍次寅 | |
| dc.subject.keyword | 希伯特-黃轉換,結構損壞檢測, | zh_TW |
| dc.subject.keyword | HHT,Detection of Structural Damage, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 13.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
