Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃偉彥
dc.contributor.authorTse-Chun Wangen
dc.contributor.author王則鈞zh_TW
dc.date.accessioned2021-06-14T16:50:45Z-
dc.date.available2011-08-16
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-12
dc.identifier.citationBibliography
[1] A. G. Riess et al. [Supernova Search Team Collaboration], “Observational
evidence from supernovae for an accelerating universe and a cosmological
constant,” Astron. J. 116, 1009 (1998) [arXiv:astro-ph/9805201].
[2] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Measure-
ments of Omega and Lambda from 42 high redshift supernovae,” Astrophys.
J. 517 (1999) 565 [arXiv:astro-ph/9812133].
[3] A. G. Riess et al. [Supernova Search Team Collaboration], “Type Ia supernova
discoveries at z > 1 from the Hubble Space Telescope: Evidence for past
deceleration and constraints on dark energy evolution,” Astrophys. J. 607,
665 (2004) [arXiv:astro-ph/0402512].
[4] J. Frieman, M. Turner and D. Huterer, “Dark Energy and the Accelerating
Universe,” Ann. Rev. Astron. Astrophys. 46, 385 (2008) [arXiv:0803.0982
[astro-ph]].
[5] E. J. Copeland, M. Sami and S. Tsujikawa, “Dynamics of dark energy,” Int.
J. Mod. Phys. D 15, 1753 (2006) [arXiv:hep-th/0603057].
71[6] M. Kowalski et al. [Supernova Cosmology Project Collaboration], “Improved
Cosmological Constraints from New, Old and Combined Supernova Datasets,”
Astrophys. J. 686, 749 (2008) [arXiv:0804.4142 [astro-ph]].
[7] D. N. Spergel et al. [WMAP Collaboration], “Wilkinson Microwave
Anisotropy Probe (WMAP) three year results: implications for cosmology,”
Astrophys. J. Suppl. 170, 377 (2007) [arXiv:astro-ph/0603449].
[8] D. J. Eisenstein et al. [SDSS Collaboration], “Detection of the baryon acoustic
peak in the large-scale correlation function of SDSS luminous red galaxies,”
Astrophys. J. 633, 560 (2005) [arXiv:astro-ph/0501171].
[9] E. Komatsu et al. [WMAP Collaboration], “Five-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” As-
trophys. J. Suppl. 180, 330 (2009) [arXiv:0803.0547 [astro-ph]].
[10] E. Komatsu et al. [WMAP Collaboration], “Seven-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” As-
trophys. J. Suppl. 192, 18 (2011) [arXiv:1001.4538 [astro-ph.CO]].
[11] D. Huterer and M. S. Turner, “Prospects for probing the dark energy
via supernova distance measurements,” Phys. Rev. D 60, 081301 (1999)
[arXiv:astro-ph/9808133].
[12] S. Nojiri and S. D. Odintsov, “Introduction to modified gravity and grav-
itational alternative for dark energy,” eConf C0602061, 06 (2006) [Int. J.
Geom. Meth. Mod. Phys. 4, 115 (2007)] [arXiv:hep-th/0601213].
72[13] A. De Felice and S. Tsujikawa, “f(R) theories,” Living Rev. Rel. 13, 3 (2010)
[arXiv:1002.4928 [gr-qc]].
[14] W. T. Lin, “Observational Constraints on the f(R) Theory of Modified Grav-
ity,” a master’s thesis.
[15] L. Pogosian and A. Silvestri, “The pattern of growth in viable f(R) cosmolo-
gies,” Phys. Rev. D 77, 023503 (2008) [Erratum-ibid. D 81, 049901 (2010)]
[arXiv:0709.0296 [astro-ph]].
[16] A. A. Starobinsky, JETP Lett. 86, 157-163 (2007). [arXiv:0706.2041 [astro-
ph]].
[17] S. Tsujikawa, Phys. Rev. D 77, 023507 (2008) [arXiv:0709.1391 [astro-ph]].
[18] W. Hu, I. Sawicki, Phys. Rev. D76, 064004 (2007). [arXiv:0705.1158 [astro-
ph]].
[19] S. Tsujikawa, R. Gannouji, B. Moraes, D. Polarski, Phys. Rev. D80, 084044
(2009). [arXiv:0908.2669 [astro-ph.CO]].
[20] S. Tsujikawa, “Matter density perturbations and effective gravitational con-
stant in modified gravity models of dark energy,” Phys. Rev. D 76, 023514
(2007) [arXiv:0705.1032 [astro-ph]].
[21] A. de la Cruz-Dombriz, A. Dobado and A. L. Maroto, “On the evolution of
density perturbations in f(R) theories of gravity,” Phys. Rev. D 77, 123515
(2008) [arXiv:0802.2999 [astro-ph]].
73[22] C. P. Ma and E. Bertschinger, “Cosmological perturbation theory in the syn-
chronous and conformal Newtonian Astrophys. J. 455, 7 (1995) [arXiv:astro-
ph/9506072].
[23] L. Amendola, R. Gannouji, D. Polarski and S. Tsujikawa, “Conditions for the
cosmological viability of f(R) dark energy models,” Phys. Rev. D 75, 083504
(2007) [arXiv:gr-qc/0612180].
[24] S. Habib, K. Heitmann, D. Higdon, C. Nakhleh and B. Williams, “Cosmic
Calibration: Constraints from the Matter Power Spectrum and the Cos-
mic Microwave Background,” Phys. Rev. D 76, 083503 (2007) [arXiv:astro-
ph/0702348].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40542-
dc.description.abstract我們探討f(R)重力修正理論下宇宙學微擾之演化,f(R)重力修正理論是一種可以解釋宇宙加速膨脹卻不使用暗能的重力理論。在一般計算出微擾f(R)宇宙中演化的方式,一般人不考慮早期針對重力理論修正,並以廣義相對論下的微擾演化作為其在f(R)重力理論下的近似 (廣相近似)。在此論文中,我們檢測廣相近似的可行性。並且,我們更進一步得提出對於早期宇宙學微擾較佳近似。對於晚期,我們考慮由物質所主宰的宇宙(the matter dominated universe)中,傅立葉波長遠小於視界面的微擾(the sub-horizon perturbations);並且,我們利用Tsujikawa的近似或Cruz-Dombriz, Dobado 和 Maroto的近似去算這些微擾的晚期演化。我們比較由我們方法(使用我們的早期近似)及一般做法(使用廣相近似計算早期微擾演化)所得出物質密度的微擾及其能量譜。我們發現在很多例子中,使用不同方式所得到的結果之間的差異可以高達百分之四十。與觀測誤差的百分之十作比較後,我們認為一般所使用的廣相近似在這些例子中是可能是有問題的,並且我們也認為較好的計算f(R)重力理論下宇宙學微擾演化是必要的。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-14T16:50:45Z (GMT). No. of bitstreams: 1
ntu-100-R98222067-1.pdf: 1312812 bytes, checksum: 8a000211835cde43582a2e766af0a4da (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 9
1.1 The Accelerating Universe . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 f(R) Modified Gravity . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 The Cosmological Perturbations . . . . . . . . . . . . . . . . . . . . 12
1.4 The Evolution of the Cosmological Perturbations . . . . . . . . . . 13
2 Equations of Motion for the Perturbations in the f(R) Cosmology 15
2.1 Background Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The Evolution Equations of the Cosmological Perturbations . . . . 16
2.2.1 The Metric Perturbations and the Perturbed Field Equations 17
2.2.2 The Evolution Equations of the Metric Perturbations . . . . 18
2.2.3 The Stress-Energy Perturbations and the Evolution Equa-
tions of the Stress-Energy Perturbations . . . . . . . . . . . 20
3 Calculating the Evolution of Perturbations in the f(R) Cosmology 23
3.1 Modified CMBFAST . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 The Framework of Modified CMBFAST . . . . . . . . . . . 24
33.2 A Conventional Method of Calculating the Evolution of the Pertur-
bations in the f(R) Cosmology . . . . . . . . . . . . . . . . . . . . 26
3.3 The Two-Scale Problem . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Our New Approximation for the Perturbations in the Early Universe 29
3.5 Two Approximations for Perturbations at Late Times . . . . . . . . 30
3.6 Summary of the Method to Solve Perturbations . . . . . . . . . . . 31
4 Results and Discussions 33
4.1 The Designer f(R) Model . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Compare Two Early-Time Approximations . . . . . . . . . . . . . . 35
4.2.1 Comparing the GR Early-Time Approximation and Ours . . 38
4.2.2 The Evolution of the Matter Energy Density Perturbations . 40
4.2.3 The Power Spectra of Matter Density Perturbation . . . . . 46
5 Summary 49
A The Numerical Tools 53
A.1 Modified CMBFAST with Our Approximation . . . . . . . . . . . . 53
A.2 The Tsujikawa Approximation Code . . . . . . . . . . . . . . . . . 63
A.3 The CDDM approximation code . . . . . . . . . . . . . . . . . . . . 67
Bibliography 71
dc.language.isoen
dc.subject宇宙學微擾zh_TW
dc.subject一般的計算f(R)宇宙學微擾演化方法zh_TW
dc.subjectf(R)重力修正理論zh_TW
dc.subject我們新的計算f(R)宇宙學微擾演化之方法zh_TW
dc.subjectcosmological perturbationsen
dc.subjectf(R) gravityen
dc.subjectaccelerating expansion of the universeen
dc.subjectour method for calculating the evolution of the pertur- bations in f(R) gravityen
dc.subjectthe conventional method for calculating the evolution of the per- turbations in f(R) gravityen
dc.titlef(R)宇宙之微擾zh_TW
dc.titlePerturbations in the f(R) Cosmologyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor顧哲安
dc.contributor.oralexamcommittee詹傳宗,李大興,張祥光,何俊麟
dc.subject.keywordf(R)重力修正理論,宇宙學微擾,一般的計算f(R)宇宙學微擾演化方法,我們新的計算f(R)宇宙學微擾演化之方法,zh_TW
dc.subject.keywordaccelerating expansion of the universe,f(R) gravity,cosmological perturbations,the conventional method for calculating the evolution of the per- turbations in f(R) gravity,our method for calculating the evolution of the pertur- bations in f(R) gravity,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2011-08-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved