請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40519
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李哖 | |
dc.contributor.author | Ching-An Chou | en |
dc.contributor.author | 周慶安 | zh_TW |
dc.date.accessioned | 2021-06-14T16:50:01Z | - |
dc.date.available | 2009-08-05 | |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-30 | |
dc.identifier.citation | 方怡丹. 1994. 根溫處理對水耕萵苣生理之影響. 國立中興大學園藝學研究所碩士論文.
王進學. 2005. 以膜熱穩定性技術評估菊花開花之熱延遲. 國立臺灣大學園藝學研究所碩士論文. 曲复寧、王云山、張敏、康黎芳、關繼耀. 2002. 高溫脅迫對仙客來根系活力和葉片生化指標的影響. 華北農學報. 17: 127-131. 林嘉洋. 2006. 耐熱矮牽牛之耐熱性與耐熱指標. 國立臺灣大學園藝學研究所碩士論文. 沈征言、朱海山. 1993. 高溫對菜豆生育影響及菜豆不同基因型的耐熱性差異. 中國農業科學. 26: 50-55. 范雙喜、谷建田、韓瑩琰. 2003. 園藝植物高溫逆境生理研究進展. 北京農學院學報. 18: 147-151. 陳錦木、傅仰人. 2003. 91年及92年台灣花壇植物產業現況調查及分析. 行政院農業委員會, 台北市. 張祿堂. 2003. 非洲鳳仙花、黃帝菊、百日草種子浸泡矮化劑Paclobutrazol、Uniconazole對其發芽及穴盤苗品質的影響. 國立臺灣大學園藝學研究所碩士論文. 郭傳友、于芬. 2003. 根溫對彩椒苗期生長的影響. 江西農業大學學報 1: 30-32. 馮玉龍、孫國斌 1995. 根系溫度對植物的影響(I):根溫對植物生長及光合作用的影響 東北林業大學學報 23: 63-69. 馮玉龍、劉恩舉. 1996. 根系溫度對番茄的影響(Ⅱ):根系溫度對番茄光合作用和水分代謝的影響. 植物研究 16: 214-218. 馮玉龍、姜淑梅. 2000. 根系溫度對甜椒生理特性的影響. 植物生理學通訊 36: 308-311. 程智慧、陸幗一. 1989. 番茄電熱線育苗苗齡研究. 中國蔬菜 2: 12-15. 劉啟祥、林深林. 1998. 根溫處理對水耕小白菜地上部生理之影響. 花蓮區研究彙報 16: 47-57. Acevedo, E., T.C. Hsiao, and D.W. Henderson. 1971. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol. 48: 631-636. Adams, S.R., S. Pearson, and P. Hadley. 1997. The effects of temperature, photoperiod and light integral on the time to flowering of pansy cv. Universal Violet (Viola X wittrockiana Gams.). Ann. Bot. 80: 107-112. Ahn, S.J., Y.J. Im, G.C. Chung, B.H. Cho, and S.R. Suh. 1999. Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature. Sci. Hort. 81: 397-408. Al-Ani, M.K.A.and R.K.M. Hay. 1983. The Influence of growing temperature on the growth and morphology of cereal seedling root systems. J. Exp. Bot. 34: 1720-1730. Albrecht, M.L.and J.C. Pair. 1995. 1994 bedding plant field trials. Rep. prog. Kans. Agric. Exp. Stn.: 17. Armitage, A.M. 1994. Ornamental Bedding Plants. CAB International, Wallingford, Oxon, UK. Armitage, A.M., J.M. Laushman, and R. Kessler. 1990. Evaluation of outdoor bedding plant performance--a season long approach. Acta. Hort: 327-334. Bailey, D.A. 1999. Selection and Use of Stress-Tolerant Bedding Plants for the Landscape, Cooperative Extension, North Carolina State University. Berry, J.and O. Bjorkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 31: 491-543. Biela, M.M., G.R. Nonnecke, W.R. Graves, and H.T. Horner. 1999. High root-zone temperature inhibits strawberry reproductive and vegetative growth and development. HortScience. 34: 499. Blackman, P.G.and W.J. Davies. 1985. Root to shoot communication in maize plants of the effects of soil drying. J. Exp. Bot. 36: 39-48. Bland, W.L. 1993. Cotton and soybean root system growth in three soil temperature regimes. Agron. J. 85: 906-911. Bowen, G.D. 1970. Effects of soil temperature on root growth and on phosphate uptake along Pinus radiata roots. Aust. J. Soil Res. 8: 31-42. Bunce, J.A. 1977. Leaf elongation in relation to leaf water potential in soybean. J. Exp. Bot. 28: 156-161. Castle, M.L., J.R. Crush, and J.S. Rowarth. 2006. An experimental method for varying root temperature independently of shoot temperature. N. Z. J. Agric. Res. 49: 157-162. Chazen, O.and P.M. Neumann. 1994. Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zea mays L.) leaves are primary responses to polyethylene glycol-Induced water deficits. Plant Physiol. 104: 1385-1392. Chen, H.H., Z.Y. Shen, and P.H. Li. 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22: 719-725. Chyliński, W., A. Łukaszewska, and K. Kutnik. 2007. Drought response of two bedding plants. Acta. Physiol. Plant. 29: 399-406. Cooper, A.J. 1975. Root temperature and plant growth. C.A.B. Research Review. 4: 73. Cooper, A.J.and J.H.M. Thornley. 1976. Response of dry matter partitioning, growth, and carbon and nitrogen levels in the tomato plant to changes in root temperature: experiment and theory. Ann. Bot. 40: 1139-1152. Copes, W. 2000. Crop Profiles for Bedding Plants in Washington, Washington State University Publishers, pp. 1-13. Delucia, E.H. 1986. Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings. Tree Physiol. 2: 143-154. DeLucia, E.H., T.A. Day, and G. Oquist. 1991. The potential for photoinhibition of Pinus sylvestris L. seedlings exposed to high light and low soil temperature. J Exp. Bot. 42: 611-617. Dieleman, J.A., F.W.A. Verstappen, and D. Kuiper. 1998. Root temperature effects on growth and bud break of Rosa hybrida in relation to cytokinin concentrations in xylem sap. Sci. Hort. 76: 183-192. Dinar, M.and J. Rudich. 1985. Effect of heat stress on assimilate partitioning in tomato Lycopersicon esculentum. Ann. Bot. 56: 239-248. Dinar, M., J. Rudich, and E. Zamski. 1983. Effects of heat-stress on carbon transport from tomato leaves. Ann. Bot. 51: 97-103. Dodd, I.C., J. He, C.G.N. Turnbull, S.K. Lee, and C. Critchley. 2000. The influence of supra-optimal root-zone temperatures on growth and stomatal conductance in Capsicum annuum L. J. Exp. Bot. 51: 239-248. Dole, J.and H. Wilkins. 2005. Floricultre Principles and Species. Prentice-Hall, Upper Saddle River, N.J. Duke, S.H., L.E. Schrader, C.A. Henson, J.C. Servaites, R.D. Vogelzang, and J.W. Pendleton. 1979. Low root temperature effects on soybean nitrogen metabolism and photosynthesis Plant Physiol. 63: 956-962. Engels, C. 1993. Differences between maize and wheat in growth-related nutrient demand and uptake of potassium and phosphorus at suboptimal root zone temperatures. Plant Soil. 150: 129-138. Erwin, J.E. 1996. Build a better plug, p. 26-29. Grower Talks on Plug 2. Ball Publishing, USA. Foster, W.J., D.L. Ingram, and T.A. Nell. 1991. Photosynthesis and root respiration in Ilex crenata 'Rotundifolia' at supraoptimal root-zone temperatures. HortScience. 26: 535-537. Fretz, T.A. 1971. Influence of physical conditions on summer temperatures in nursery containers. HortScience. 6: 400-401. Giacomelli, G.A.and H.W. Janes. 1984. NFT greenhouse tomato grown with heated nutrient solution. Acta. Hort. 148: 827-834. Glinski, J.and J. Lipiec. 1990. Soil conditions and plant roots. CRC Press, Boca Raton, Fla. Goldsberry, K.L.and R.C. Lang. 1987. Response of gerbera to root zone heating in soil and gravel substrates. HortScience. 22: 595-597. Gosselin, A.and M.J. Trudel. 1986. Root-zone temperature effects on pepper. J. Amer. Soc. Hort. Sci. 111: 220-224. Graves, W.R.and M.N. Dana. 1987. Root-zone temperature monitored at urban sites. HortScience. 22: 613-614. Guedira, M.and G.M. Paulsen. 2002. Accumulation of starch in wheat grain under different shoot/root temperatures during maturation. Funct. Plant Biol. 29: 495-503. Gur, A., B. Bravdo, and J. Hepner. 1976. The influence of root temperature on apple tree. III. The effect on photosynthesis and water balance. J. Hort. Sci. 51: 203-210. Gur, A., B. Bravdo, and Y. Mizrahi. 1972. Physiological responses of apple trees to supraoptimal root temperature. Plant Physiol. 27: 130-138. Ham, J.M., G.J. Kluitenberg, and W.J. Lamont. 1993. Optical properties of plastic mulches affect the field temperature regime. J. Amer. Soc. Hort. Sci. 118: 188-193. Havaux, M. 1993. Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci. 94: 19-33. He, J.and S.K. Lee. 1997. Photosynthetic adaptation of lettuce (Lactuca sativa L) to the fluctuating hot ambient temperatures with the manipulation of cool rootzone temperature. Plant Physiol. 114: 1095-1095. He, J.and S.K. Lee. 1998a. Growth and photosynthetic characteristics of lettuce (Lactuca sativa L.) under fluctuating hot ambient temperatures with the manipulation of cool root-zone temperature. J. Plant Physiol. 152: 387-391. He, J.and S.K. Lee. 1998b. Growth and photosynthetic responses of three aeroponically grown lettuce cultivars (Lactuca sativa L.) to different rootzone temperatures and growth irradiances under tropical aerial conditions. J. Hort. Sci. Biotech. 73: 173-180. He, J., S.K. Lee, and I.C. Dodd. 2001. Limitations to photosynthesis of lettuce grown under tropical conditions: alleviation by root-zone cooling. J. Exp. Bot. 52: 1323-1330. Hodyss, L.B. 1993. Bedding plant trails for southeast Florida. Proc annu meet Fla State Hort. Soc. 105: 242-246. Howe, T.K., W.E. Waters, and J.F. Price. 1991. Evaluation of impatiens cultivars for the landscape in west-central Florida. Proc Fla State Hort. Soc. 104: 348-351. Huang, B.and Q. Xu. 2000a. Root growth and nutrient element status of creeping bentgrass cultivars differing in heat tolerance as influenced by supraoptimal shoot and root temperature. J. Plant Nutri. 23: 979-990. Huang, B.and Q. Xu. 2000b. Root mortality and nutrient uptake of creeping bentgrass in response to differential root and shoot temperatures. HortScience. 35: 414. Ingram, D.L., C. Martin, and B. Castro. 1988. Container spacing treatments influence temperature fluctuations and holly growth. Proc. Fla. State Hort. Soc. 101: 328-331. Inoue, N., Y. Taira, T. Emi, Y. Yamane, Y. Kashino, H. Koike, and K. Satoh. 2001. Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant Cell Physiol. 42: 1140-1148. Jiao, J.and B. Grodzinski. 1996. The effect of leaf temperature and photorespiratory conditions on export of sugars during steady state photosynthesis in Salvia splendens. Plant Physiol. 111: 169-178. Johnson, C.R.and D.L. Ingram. 1984. Pittosporum tobira response to container medium temperature. HortScience. 19: 524-525. Küppers, M., A.E. Hall, and E.D. Schulze. 1982. Effects of day-to-day changes in root temperature on leaf conductance to water vapour and CO2 assimilation rates of Vigna unguiculata L. Walp. Oecologia. 52: 116-120. Kaczperski, M.P., W.H. Carlson, and M.G. Karlsson. 1991a. Growth and development of Petunia x hybrida as a function of temperature and irradiance. J. Amer. Soc. Hort. Sci. 116: 232-237. Kaczperski, M.P., W.H. Carlson, and M.G. Karlsson. 1991b. Growth and development of Petunia x hybrida as a function of temperature and irradiance. J. Amer. Soc. Hort. Sci. 116: 232-237. Kar, S., S.B. Varade, T.K. Subramanyam, and B.P. Ghildyal. 1976. Soil physical conditions affecting rice root growth: bulk density and submerged soil temperature regime effects. Agron. J. 68: 23-26. Karim, M.A., Y. Fracheboud, and P. Stamp. 2000a. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes. J. Agron. Crops Sci. 184: 217-223. Karim, M.A., Y. Fracheboud, and P. Stamp. 2000b. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes. J. Agr. Crop Sci. 184: 217-223. Khairi, M.M.A.and A.E. Hall. 1970. Effects of air and soil temperature on vegetative growth of citrus. J. Amer. Soc. Hort. Sci. 101: 337-341. Klock, K.A., W.R. Graves, and H.G. Taber. 1996. Growth and phosphorus, zinc and manganese content of tomato, muskmelon, and honey locust at high root-zone tmeperatures. J. Plant Nutri. 19: 795-806. Klock, K.A., H.G. Taber, and W.R. Graves. 1994. 304 Comparison of horticultural crops grown at two root-zone temperatures. HortScience. 29: 473-f-474. Klock, K.A., H.G. Taber, and W.R. Graves. 1997. Root respiration and phosphorus nutrition of tomato plants grown at a 36 {degrees}C root-zone temperature. J. Amer. Soc. Hort. Sci. 122: 175-178. Larcher, W. 1995. Stress due to extreme temperatures, Physiological Plant Ecology, pp. 340-354. Lee, S.K.and S.C. Cheong. 1996. Inducing head formation of iceberg lettuce (Latuca sativa L) in the tropics through root-zone temperature control. Trop. Agric. 73: 34-42. Lee, W.S. 1991. High-temperature Effects on Vegetative Growth and Floral Development in Impatiens walleriana. Dissertation, Univ. of Florida. Lee, W.S., J.E. Barrett, and T.A. Nell. 1990. High temperature effects on the growth and flowering of Impatiens wallerana cultivars. Acta. Hort. 272: 121-127. Lin, W.C. 1985. Influence of soil cooling and high intensity lighting on the growth and flowering of Astronemeria 'Regina'. HortScience. 20: 378-380. Marcum, K.B. 1998. Cell membrane thermostability and whole-plant heat tolerance of kentucky bluegrass. Crop Sci. 38: 1214-1218. Martin, C.A.and D.L. Ingram. 1991. Root Growth of Southern Magnolia Following Exposure to High Root-zone Temperatures. HortScience. 26: 370-371. Martin, C.A.and D.L. Ingram. 1992. Photosynthetic inhibition of Magnolia Grandiflora `ST. Mary' leaves by supraoptimal root-zone temperatures. HortScience. 27: 1261. Martineau, J.R., J.E. Specht, J.H. Williams, and C.Y. Sullivan. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing celluar membrane thermostability. Crop Sci. 19: 75-78. McMichael, B.L.and J.J. Burke. 1998. Soil temperature and root growth. HortScience. 33: 947-951. McMichael, B.L.and J.E. Quisenberry. 1993. The impact of the soil environment on the growth of root systems. Enviorn. Expt. Bot. 33: 53-61. Merritt, R.H.and H.C.J. Kohl. 1982. Effect of root temperature and photoperiod on growth and crop productivity efficiency of petunia. J. Amer. Soc. Hort. Sci. 107: 997-1000. Meyer, G.E., G. Ridder, J.B. Fitzgerald, and D.D. Schulte. 1993. Simulated water use and growth of new guinea impatiens (Impatiens X HB.) in single pots using root zone heating. Transactions of the ASAE 36: 1887-1893. Moon, J.W., J.F. Hancock, A.D. Draper, and J.A. Flore. 1987. Genotypic differences in the effect of temperature on CO2 assimilation and water use efficiency in blueberry. J. Amer. Soc. Hort. Sci. 112: 170-173. Moss, G.I. 1976. Temperature effects on flower initiation in sweet orange (Citrus sinensis). 27: 399-407. Natarajan, S. 2005. High Temperature Stress Responses of Salvia Splendens and Viola X Wittrockiana. Dissertation, Louisiana State University. Oh, W., J.H. Park, H.K. Kim, Y.H. Rhie, C. Chun, and K.S. Kim. 2007. Root-zone cooling improves growth of Cyclamen persicum under heat stress. Hort. Enviorn. Biotech. 48: 68-72. Onwueme, I.C. 1979. Rapid plant-conserving estimation of heat tolerance in plants. J. Agr. Sci. Camb. 92: 527-536. Pearson, R.W., L.F. Ratliff, and H.M. Taylor. 1970. Effect of soil temperature, strength, and pH on cotton seedling root elongation. Agron. J. 62: 243-246. Pietsch, G.M., W.H. Carlson, R.D. Heins, and J.E. Faust. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus (L.) 'grape cooler'. J. Amer. Soc. Hort. Sci. 120: 877-881. Pramuk, L.A.and E.S. Runkle. 2005. Modeling growth and development of celosia and impatiens in response to temperature and photosynthetic daily light integral. J. Amer. Soc. Hort. Sci. 130: 813-818. Quinn, D., B. Behe, and J. Witt. 1996. 1994-1995 annual winter trial garden results. Circ Auburn Univ, Agric. Exp. Stn: 29. Raison, J.K., J.A. Berry, P.A. Armond, and C.S. Pike. 1980. Membrane properties in relation to the adaptation of plants to temperature stress. In: N.C. Turner and P.J. Kramer (Eds.), Adaptation of plants to water and high temperature stress, John Wiley & Sons, New York. Ristic, Z.and D.D. Cass. 1992. Chloroplast structure after water and high-temperature stress in two lines of maize that differ in endogenous levels of abscisic acid. J. Plant Sci. 153: 186-196. Russell, R.S. 1982. Relationships between roots and shoots, p. 9-27. In: R.S. Russell (ed.). Plant Root System. McGraw-Hill Book Company, Berkshire, England. Ruter, J.M.and D.L. Ingram. 1992. High root-zone temperatures influence RuBisCO activity and pigment accumulation in leaves of `Rotundifolia' holly. J. Amer. Soc. Hort. Sci. 117: 154-157. Saadalla, M.M., J.F. Shanahan, and J.S. Quick. 1990. Heat tolerance in winter wheat: I. Hardening and genetic effects on membrane thermostability. Crop Sci. 30: 1243-1247. Sachs, R.M., I. Sisto, B.M. Jenkins, and G.W. Forister. 1992. Plant response and energy savings for bench-top-heated greenhouses. Sci. Horti. 49: 135-146. Sibley, L.J., M. Ruter, and D.J. Eakes. 1999. Root membrane thermostability of red maple cultivars. J. Thermal Biol. 24: 79-89. Szaniawski, R.K.and M. Kielkiewicz. 1982. Maintenance and growth respiration in shoots and roots of sunflower plants grown at different root temperatures. Physiol. Plant. 54: 500-504. Tachibana, S., Y.C. Du, Y.H. Wang, and F. Kitamura. 1997. Implication of endogenous cytokinins in the growth inhibition of cucumber [Cucumis sativus] plants by supraoptimal root-zone temperature. J. Jpn. Soc. Hort. Sci. 66: 549-555. Tagliavini, M.and N.E. Looney. 1991. Response of Peach Seedlings to Root-zone Temperature and Root-applied Growth Regulators. HortScience. 26: 870-872. Taub, D.R., J.R. Seemann, and J. Coleman. 2000. Growth in elecated CO2 protects photosynthesis against high temperature damage. Plant Cell Enviorn. 23: 649-656. Thompson, H.C., R.W. Langhans, A.-J. Both, and L.D. Albright. 1998. Shoot and root temperature effects on lettuce growth in a floating hydroponic system. J. Amer. Soc. Hort. Sci. 123: 361-364. Turner, N.C. 1974. Stomatal behaviour and water status of maize, sorghum and tobacco under field conditions. Plant Physiol. 53: 360-365. Tzeng, S.and B.D. Hsu. 2001. Chlorophyll degradation in heat-treated Chlorella pyrenoidosa. A flow cytometric study. Australian Jo. Plant Physiol. 28: 79-83. U.S. Dept. of Agriculture. 2005. Floriculture Crops 2004 Summary, Natl. Agr. Sta. Serv., Washington, D.C. U.S. Dept. of Agriculture. 2006. Floriculture Crops 2005 Summary, Natl. Agr. Sta. Serv., Washington, D.C. Uchneat, M.S. 2006. Impatiens - Impatiens wallerana, p. 277-299. Flower Breeding and Genetics: Issues, Challenges and Opportunities for the 21st Century. Springer. Vapaavuori, E.M., R. Rikala, and A. Ryyppo. 1992. Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiol. 10: 217-230. Walker, J.M. 1969. One-degree increments in soil temperatures affect maize seedling behavior. J. Soil Sci. Soc. Amer. 33: 729-736. Walker, J.M. 1970. Effects of alternating versus constant soil temperature on maize seedling growth. Soil Sci. Soc. Amer. Proc. 34: 889-892. Warner, R.M.and J.E. Erwin. 2005. Prolonged high temperature exposure and daily light integral impact growth and flowering of five herbaceous ornamental species. J. Amer. Soc. Hort. Sci. 130: 319-325. Watts, W.R. 1972. Leaf extension in zea mays: I. leaf extension and water potential in relation to roo-zone and air temperature. J. Exp. Bot. 23: 704-712. Wien, H.C., P.L. Minotti, and V.P. Grubinger. 1993. Polyethylene mulch stimulates early root growth and nutrient uptake of transplanted tomatoes. J. Amer. Soc. Hort. Sci. 118: 207-211. Xu, Q.and B. Huang. 2000. Growth and physiological responses of creeping bntgrass to changes in air and soil temperatures. Crop Sci. 40: 1363-1368. Xu, Q.Z.and B.R. Huang. 2001. Lowering soil temperatures improves creeping bentgrass growth under heat stress. Crop Sci. 41: 1878-1883. Xu, Q.Z., B.R. Huang, and Z.L. Wang. 2002. Photosynthetic responses of creeping bentgrass to reduced root-zone temperatures at supraoptimal air temperature. J. Amer. Soc. Hort. Sci. 127: 754-758. Yeh, D.M.and H.F. Lin. 2003. Thermostability of cell membranes as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128: 656-660. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40519 | - |
dc.description.abstract | 非洲鳳仙花是台灣秋冬春季節中種植最多的花壇植物種類之一,而夏季高溫度是限制非洲鳳仙花應用最重要的環境因子。非洲鳳仙花的種子均由國外進口,包含5個品種系列共45個商業品種於市區及郊區海拔400 m較冷涼處等不同地點及不同定植季節(12月及3月)以評估其景觀上的整體表現,結果顯示非洲鳳仙花整體表現受到種植地點及種植時期所而影響,而溫度為主要影響非洲鳳仙花的環境因子之一。在合宜的生長溫度下,各品種系列間的表現無顯著地差異且觀賞時期可長達5個月。而在溫度較高或有短暫高溫的情況下,而觀賞期約只可維持3個月左右。
在人工氣候室內設定不同的日/夜溫度從15/13、20/15、25/20、30/25至35/30℃的環境下測試其對4個非洲鳳仙花品種之生育及光合作用的影響。在高溫35/30℃的環境下,非洲鳳仙花地上部的生育包植株高度、葉片數、分枝數、花朶大小、地上部乾鮮重等受到限制。地上部光合作用則於30/25℃時快速下降。根部生長隨溫度升高而下降,在35/30°C之高溫環境下幾乎停止生長。高溫對根部生長大於對地上部生長的影響。 為測試高根溫對非洲鳳仙花生育及光合作用的影響,於生長箱內設定日/夜溫25/20℃環境下,將二品種非洲鳳仙花使用可加溫的水耕箱予以25、27.5、30、32.5及35℃等不同根溫處理6天。結果顯示根溫32.5℃以上會抑制非洲鳳仙花的生長及光合作用的進行;而根溫大於30℃則抑制根部生長。因此,根部生長對高根溫是非常敏感的。於高溫的環境下,降低根部生長溫度,可延長非洲鳳仙花整體景觀表現。 | zh_TW |
dc.description.abstract | Impatiens are one of the most popular bedding plants used for landscaping during autumn, winter and spring season in northern part of Taiwan. High temperature during summer season impairs the growth of impatiens. The five series of impatiens(Impatiens walleriana Hook.f) including 45 commercial cultivars were planted at the urban and suburban areas in the northern part of Taiwan and planted at different growing seasons of Dec, 2001 and Mar, 2002 to evaluate landscaping performance among cultivars. The results showed that the factors of planting areas and planting seasons affected the growth and performance of impatiens that showed temperature was the major factor. Under optimum temperature circumstance, most impatiens cultivars grew well and performed well until 150 DAT. But heat stress occurred, the results showed difference of performance among 45 impatiens cultivars and plant quality only maintained to 90 DAT.
Four cultivars of impatiens (Impatiens walleriana Hook.f.) were studied in a phytotron at different day/night temperature of 15/13, 20/15, 25/20, 30/25 and 35/30°C to investigate the effects of different day/night temperatures on growth and photosynthesis. High temperature 35/30°C impaired the growth and decreased the height, number of leaves, branches, shoot dry/fresh weight and flower size. The net photosynthesis decreased sharply at 35/30°C. As temperature increased from 15/13 to 35/30°C, the dry weight of roots decreased and almost stopped at 35/30°C. High temperature affected the root growth more than shoot growth. The effects of high root temperatures on growth and photosynthesis in two cultivars of impatiens were studied in a growth chamber that the day/night temperature was set at 25/20℃. Five root temperatures were set at 25, 27.5, 30, 32.5 and 35℃ using hydroponic unit equitted with heating system. Results showed that high root temperature would ≧32.5℃ impair plants growth and photosynthesis and root temperature ≧30℃ would inhibit root growth. In conclusion, the root growth of impatiens was sensitive to high root temperature that any way to reduce root temperature would increase landscaping performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:50:01Z (GMT). No. of bitstreams: 1 ntu-97-D88628001-1.pdf: 7233991 bytes, checksum: 33f574749f4d0c0a6b4ed3936560a7f8 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 中文摘要
英文摘要 第一章 緒論 1 1.1 非洲鳳仙花之簡介 1 1.1.1非洲鳳仙花之起源與育種發展 1 1.1.2 非洲鳳仙花於花壇之應用 4 1.2 溫度對非洲鳳仙花生育及光合作用的影響 8 1.3 根溫對作物生育及光合作用的影響 11 1.3.1 根溫對植物生育的影響 11 1.3.2 根溫對光合作用的影響 16 第二章 非洲鳳仙花於臺灣北部都市花壇之生長表現及應用之評估 18 2.1 摘要 18 2.1.1 中文摘要 18 2.1.2 英文摘要 18 2.2 前言 19 2.3 材料與方法 21 2.3.1 試驗材料 21 2.3.2 種植環境 21 2.3.3 試驗調查 23 2.3.3.1 冬/春季試驗調查 23 2.3.3.2 春/夏季試驗調查 23 2.4 結果 25 2.4.1 冬/春季試驗調查 25 2.4.2 春/夏季試驗調查 35 2.4.3 冬/春種植及春/夏季種植試驗比較 39 2.5 討論 42 第三章 不同日夜溫度對非洲鳳仙花生育及光合作用的影響 45 3.1 摘要 45 3.1.1 中文摘要 45 3.1.2 英文摘要 45 3.2 前言 46 3.3 材料與方法 47 3.3.1 試驗材料與環境條件 47 3.3.2 試驗方法 48 3.3.3試驗調查項目 49 3.3.4 光合作用測量 49 3.3.5 細胞膜熱穩定性測量 49 3.3.6統計分析 50 3.4 結果 51 3.4.1 不同日夜溫對非洲鳳仙花生育之影響 51 3.4.2 不同日夜均溫對非洲鳳仙花光合作用之影響 61 3.5 討論 64 第四章 根溫對非洲鳳仙花生育及光合作用之影響 68 4.1 摘要 68 4.1.1 中文摘要 68 4.1.2 英文摘要 69 4.2 前言 69 4.3 材料與方法 70 4.3.1試驗一:不同根溫對非洲鳳仙花生育之影響 70 4.3.2試驗二:不同根溫對非洲鳳仙花光合作用之影響 73 4.3.3 統計分析 74 4.4 結果 74 4.4.1根溫對非洲鳳仙花生育之影響 74 4.4.2 根溫對非洲鳳仙花葉片光合作用之影響 81 4.5 討論 85 4.5.1 根溫對非洲鳳仙花生育之影響 85 4.5.2 根溫對非洲鳳仙花光合作用之影響 86 第五章 綜合討論 89 5.1 非洲鳳仙花於台灣北部地區景觀上的應用 89 第六章 結論 95 參考文獻 97 | |
dc.language.iso | zh-TW | |
dc.title | 溫度對非洲鳳仙花生育及光合作用之影響 | zh_TW |
dc.title | Effects of Temperature on Growth and Photosynthesis in Impatiens (Impatiens walleriana Hook.f.) | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 朱鈞,張育森,葉德銘,侯錦雄,林瑞松 | |
dc.subject.keyword | 溫度,鳳仙花,光合作用, | zh_TW |
dc.subject.keyword | Temperature,Impatiens walleriana Hook.f.,Photosynthesis, | en |
dc.relation.page | 106 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-31 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 7.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。