Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40502
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林榮耀
dc.contributor.authorYa-Wen Chengen
dc.contributor.author鄭雅文zh_TW
dc.date.accessioned2021-06-14T16:49:30Z-
dc.date.available2013-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citationAfar DE, Vivanco I, Hubert RS, Kuo J, Chen E, Saffran DC, Raitano AB and Jakobovits A (2001) Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 61:1686-1692.
Agarwal R (2000) Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochem Pharmacol 60:1051-1059.
Agiostratidou G, Hulit J, Phillips GR and Hazan RB (2007) Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. J Mammary Gland Biol Neoplasia 12:127-133.
Akiyama T and Kawasaki Y (2006) Wnt signalling and the actin cytoskeleton. Oncogene 25:7538-7544.
Balk SP and Knudsen KE (2008) AR, the cell cycle, and prostate cancer. Nucl Recept Signal 6:e001.
Bonaccorsi L, Nosi D, Quercioli F, Formigli L, Zecchi S, Maggi M, Forti G and Baldi E (2008) Prostate cancer: A model of integration of genomic and non-genomic effects of the androgen receptor in cell lines model. Steroids 73:1030-1037.
Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W and Matrosovich M (2006) Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 80:9896-9898.
Castillo J, Erroba E, Perugorria MJ, Santamaria M, Lee DC, Prieto J, Avila MA and Berasain C (2006) Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res 66:6129-6138.
Cerveira N, Ribeiro FR, Peixoto A, Costa V, Henrique R, Jeronimo C and Teixeira MR (2006) TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia 8:826-832.

Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H and Taniguchi H (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44:240-251.
Chuan YC, Pang ST, Cedazo-Minguez A, Norstedt G, Pousette A and Flores-Morales A (2006) Androgen induction of prostate cancer cell invasion is mediated by ezrin. J Biol Chem 281:29938-29948.
Culig Z, Steiner H, Bartsch G and Hobisch A (2005) Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem 95:497-505.
Damber JE and Aus G (2008) Prostate cancer. Lancet 371:1710-1721.
Demichelis F and Rubin MA (2007) TMPRSS2-ETS fusion prostate cancer: biological and clinical implications. J Clin Pathol 60:1185-1186.
Furusato B, Gao CL, Ravindranath L, Chen Y, Cullen J, McLeod DG, Dobi A, Srivastava S, Petrovics G and Sesterhenn IA (2008) Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol 21:67-75.
George SJ and Dwivedi A (2004) MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med 14:100-105.
Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM and Trapman J (2006) TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res 66:10658-10663.
Hobisch A, Ramoner R, Fuchs D, Godoy-Tundidor S, Bartsch G, Klocker H and Culig Z (2001) Prostate cancer cells (LNCaP) generated after long-term interleukin 6 (IL-6) treatment express IL-6 and acquire an IL-6 partially resistant phenotype. Clin Cancer Res 7:2941-2948.
Hsieh AC, Small EJ and Ryan CJ (2007) Androgen-response elements in hormone-refractory prostate cancer: implications for treatment development. Lancet Oncol 8:933-939.

Jie X, Lang C, Jian Q, Chaoqun L, Dehua Y, Yi S, Yanping J, Luokun X, Qiuping Z, Hui W, Feili G, Boquan J, Youxin J and Jinquan T (2007) Androgen activates PEG10 to promote carcinogenesis in hepatic cancer cells. Oncogene 26:5741-5751.
Kantoff P (2006) Prevention, complementary therapies, and new scientific developments in the field of prostate cancer. Rev Urol 8 Suppl 2:S9-S14.
Karan D, Schmied BM, Dave BJ, Wittel UA, Lin MF and Batra SK (2001) Decreased androgen-responsive growth of human prostate cancer is associated with increased genetic alterations. Clin Cancer Res 7:3472-3480.
Kim TS, Heinlein C, Hackman RC and Nelson PS (2006) Phenotypic analysis of mice lacking the Tmprss2-encoded protease. Mol Cell Biol 26:965-975.
Konstantinos H (2005) Prostate cancer in the elderly. Int Urol Nephrol 37:797-806.
Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P, Ferrari M, Hernandez-Boussard T, Brooks JD and Pollack JR (2007) Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res 67:8504-8510.
Laxman B, Tomlins SA, Mehra R, Morris DS, Wang L, Helgeson BE, Shah RB, Rubin MA, Wei JT and Chinnaiyan AM (2006) Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia 8:885-888.
Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, Hood L and Nelson PS (1999) Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 59:4180-4184.
Liu W, Ewing CM, Chang BL, Li T, Sun J, Turner AR, Dimitrov L, Zhu Y, Kim JW, Zheng SL, Isaacs WB and Xu J (2007) Multiple genomic alterations on 21q22 predict various TMPRSS2/ERG fusion transcripts in human prostate cancers. Genes Chromosomes Cancer 46:972-980.
Lucas JM, True L, Hawley S, Matsumura M, Morrissey C, Vessella R and Nelson PS (2008) The androgen-regulated type II serine protease TMPRSS2 is differentially expressed and mislocalized in prostate adenocarcinoma. J Pathol 215:118-125.
Macfarlane SR, Seatter MJ, Kanke T, Hunter GD and Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53:245-282.
Mehra R, Tomlins SA, Yu J, Cao X, Wang L, Menon A, Rubin MA, Pienta KJ, Shah RB and Chinnaiyan AM (2008) Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res 68:3584-3590.
Mertz KD, Setlur SR, Dhanasekaran SM, Demichelis F, Perner S, Tomlins S, Tchinda J, Laxman B, Vessella RL, Beroukhim R, Lee C, Chinnaiyan AM and Rubin MA (2007) Molecular characterization of TMPRSS2-ERG gene fusion in the NCI-H660 prostate cancer cell line: a new perspective for an old model. Neoplasia 9:200-206.
Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY, Stanimirovic A, Encioiu E, Neill M, Loblaw DA, Trachtenberg J, Narod SA and Seth A (2007) Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer 97:1690-1695.
Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH and Antalis TM (2003) Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 22:237-258.
Nishibori M, Mori S and Takahashi HK (2005) Physiology and pathophysiology of proteinase-activated receptors (PARs): PAR-2-mediated proliferation of colon cancer cell. J Pharmacol Sci 97:25-30.
Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C and Antonarakis SE (1997) Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 44:309-320.
Polette M, Mestdagt M, Bindels S, Nawrocki-Raby B, Hunziker W, Foidart JM, Birembaut P and Gilles C (2007) Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cells Tissues Organs 185:61-65.

Qiu D, Owen K, Gray K, Bass R and Ellis V (2007) Roles and regulation of membrane-associated serine proteases. Biochem Soc Trans 35:583-587.
Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A, Fazli L, Jones EC, Palmer JB, Gleave ME, Cox ME and Huntsman DG (2007) Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol 60:1238-1243.
Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP, Brandl R, Seidl S, Schomig A and Ott I (2007) Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis. Arterioscler Thromb Vasc Biol 27:769-775.
Shi X, Gangadharan B, Brass LF, Ruf W and Mueller BM (2004) Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res 2:395-402.
Srikantan V, Valladares M, Rhim JS, Moul JW and Srivastava S (2002) HEPSIN inhibits cell growth/invasion in prostate cancer cells. Cancer Res 62:6812-6816.
Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B, Shaheduzzaman S, Tan SH, Vaidyanathan G, Whitman E, Hawksworth DJ, Chen Y, Nau M, Patel V, Vahey M, Gutkind JS, Sreenath T, Petrovics G, Sesterhenn IA, McLeod DG and Srivastava S (2008) TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene.
Szabo R and Bugge TH (2008) Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol 40:1297-1316.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40502-
dc.description.abstract肝癌是正常肝細胞變異所產生的惡性腫瘤,同時是國人因癌症致死的主因之一。在大部分亞洲國家中,肝癌也是常見致死的病症。在西方國家中,攝護腺癌是好發於男性的惡性腫瘤。近幾年來,由於生活方式與習慣趨於西化,在許多亞洲國家中,攝護腺癌的罹患率也有逐漸攀升的趨勢。 第二型穿膜絲胺酸蛋白酶 2(TMPRSS2)屬於第二型絲胺酸蛋白酶(TTSP)的一員。早期的文獻中指出第二型絲胺酸蛋白酶 2 大量表現於攝護腺癌病人身上,但其表現在不受賀爾蒙調控之實驗動物攝護腺癌細胞中,則有明顯下降的趨勢。
為了進一步研究第二型絲胺酸蛋白酶2在肝癌以及攝護腺癌中所扮演的角色,我們分析統計臨床上第二型絲胺酸蛋白酶 2在肝癌病人組織切片中的表現量。結果顯示,約有六成的肝癌患者,有下降的第二型絲胺酸蛋白酶 2的表現。相較於第一、二期的肝癌患者,在第三、四期的患者,此蛋白酶表現量更是大幅地降低。在癒後方面,我們發現第二型絲胺酸蛋白酶2表現量愈高的患者,其存活率也有愈高的趨勢。在肝癌細胞株及攝護腺癌細胞株中,較惡化的癌細胞株(如SK-Hep1以及DU-145細胞)表現其第二型絲胺酸蛋白酶2的量,較早期腫瘤形成能力低的癌細胞(HUH7以及LNCaP C-33細胞)少,其下降程度非常顯著。藉由大量表現外源性第二型絲胺酸蛋白酶2在肝癌細胞株(HUH7)中,結果發現癌細胞生長速度趨緩及其移動能力減弱的現象。
在非賀爾蒙依賴型攝護線癌細胞株(DU-145)中,外源性的第二型絲胺酸蛋白酶2 可降低癌細胞的移動及侵襲能力。若將癌細胞株(LNCaP C-33)中的第二型絲胺酸蛋白酶表現量壓低,發現癌細胞生長明顯加快。我們推測是由於癌細胞中的第二型絲胺酸蛋白酶表現量下降,造成某些抑癌基因,如P53,的表現量下降,進而導致癌細胞生長加速。
在共軛焦螢光顯微鏡的分析中,可以發現癌細胞因第二型絲胺酸蛋白酶2的表現量下降,促成細胞形態明顯地變圓;同時觀察到,原本位於細胞膜周邊的beta-catenin蛋白,在膜上的量也有降低的現象。因此,綜合以上實驗結果,在肝癌和攝護腺癌中,第二型絲胺酸蛋白酶2扮演一個負向調控者的角色,以抑制癌細胞生長、移動以及侵襲能力。
zh_TW
dc.description.abstractHepatocellular carcinoma (HCC) arises from hepatocytes and is the primary malignant lesion of liver. In some areas of Asia, HCC is the most common cause of cancer-related death. Moreover, prostate cancer is a common malignant disease of males in western countries. Recently, the incidence of prostate cancer tends to increase in most Asia countries including Taiwan, because of westernized lifestyle and diet. To further identify genes involved in cancer malignancy, our preliminary data from a microarray analysis showed that TMPRSS2 gene expression was altered. TMPRSS2 (type II transmembrane protease, serine 2) is a member of the type II transmembrane serine protease (TTSP) family. It has been shown that TMPRSS2 protein was abundantly expressed in prostate cancer patients, but down-regulated in hormone-depleted prostate cancer xenograft.
To further explore the role of TMPRSS2 in HCC and prostate cancer, initially we investigated the expression of TMPRSS2 in 20 patients’ tissues of hepatocellular carcinoma (HCC) and found that approximately 61% of HCC patients had a decrease of TMPRSS2 expression. The degree of decreased TMPRSS2 expression is higher in stage3~4 patients than that in stage1~2 patients. Using a microarray analysis, a higher expression level of TMPRSS2 was related to a higher survival rate of patients. In human HCC and prostate cancer cell lines, the expression of TMPRSS2 was down-regulated in malignant cancer cell lines (SK-Hep1 and DU-145, compared to HUH7 and LNCaP C-33 cells). Overexpression of TMPRSS2 in HUH7 cells resulted in reducing their cell proliferation and cell migration. In androgen-independent prostate cancer DU-145 cells, ectopic expression of TMPRSS2 also reduced their cell migration and invasion, as shown in HCC cells. Knockdown of TMPRSS2 led to an increase of cell proliferation in LNCaP C-33 cells, at least in part due to TMPRSS2 down-regulating some of tumor suppressor genes in cell cycle including P53 gene. The results from the confocal fluorescence microscopy analysis showed that cell morphology was changed with a roundish shape and membrane-bound beta-catenin decreased in TMPRSS2 knockdown prostate cancer cells. Thus, the data taken togehter indicate that TMPRSS2 exhibits a negative role in cell proliferation, migration, and invasion in human HCC and prostate cancer cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:49:30Z (GMT). No. of bitstreams: 1
ntu-97-R95442022-1.pdf: 7807224 bytes, checksum: 0a7126b03bcb2c12034f30ca29749eee (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員審定書 i
目錄 ii
誌謝 iv
中文摘要 v
Abstract: vii
Introduction 1
Materials and methods 6
Results 19
1. Down regulation of TMPRSS2 gene expression in advanced hepatocellular carcinoma (HCC) among 20 HCC tissue pairs. 19
2. TMPRSS2 expression is related to the survival rate of liver cancer patients. 20
3. Analysis of the TMPRSS2 gene expression and cell motility in HCC cell lines 20
4. Establishment of a TMPRSS2 mammalian expression plasmid and stable clones of HUH7 cells expressing TMPRSS2. 21
5. Overexpression of TMPRSS2 could inhibit cell proliferation of a HUH7 stable clone. 22
6. Role of TMPRSS2 in migration of HCC cells. 23
7. Analysis of the TMPRSS2 expression levels in prostate cancer cell lines by a quantitative real-time PCR. 23
8. Ectopic expression of TMPRSS2 in DU-145 cells could reduce cell transmigration by a transwell assay. 24
9. Cell proliferation was enhanced in siRNA-TMPRSS2 knockdown cells. 26
10. Analysis of tumor suppression genes in TMPRSS2-knockdown LNCaP C-33 cells by a quantitative real-time PCR. 27
11. Analysis of β-catenin distribution and cell morphology in siRNA-TMPRSS2 LNCaP C-33 cells. 27
12. Cell proliferation was enhanced in TMPRSS2-shRNA knockdown cells. 28
13. Analysis of β-catenin distribution and cell morphology in shRNA-TMPRSS2 LNCaP C-33 cells. 29
Discussion 30
Figures 35
Legends 50
References 67
dc.language.isoen
dc.subject細胞生長zh_TW
dc.subject攝護腺癌zh_TW
dc.subject絲胺酸蛋白&#37238zh_TW
dc.subjectprostate canceren
dc.subjectcell proliferationen
dc.subjectserine proteaseen
dc.title第二型膜上絲胺酸蛋白酶2之功能性研究zh_TW
dc.titleFunctional study of type II transmembrane protease, serine 2en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor李明學
dc.contributor.oralexamcommittee錢宗良,沈湯龍
dc.subject.keyword攝護腺癌,絲胺酸蛋白&#37238,細胞生長,zh_TW
dc.subject.keywordprostate cancer,serine protease,cell proliferation,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
7.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved