Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40413
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峰輝
dc.contributor.authorChing-Li Tsengen
dc.contributor.author曾靖孋zh_TW
dc.date.accessioned2021-06-14T16:47:00Z-
dc.date.available2010-08-06
dc.date.copyright2008-08-06
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation1. Oestreicher P. Advanced Non-Small Cell Lung Cancer: Implementing Treatment Advances in Clinical Practice. In: Houlihan NG, editor. A Continuing Education Monograph for Oncology Nurses: Oncology Education Services, Inc., 2005.
2. CL R, C A. Cancer statics. Semin Oncol 2003;30(Suppl 1):3-11.
3. Wang D, Lippard SJ. Cellular processing of platium anticancer drugs. Nature Reviews Drug Discovery 2005;4:307-320.
4. Nie S, Xing Y, Kim GJ, Simons J. Nanotechnology Applications in Cancer. Annu Rev Biomed Eng 2007;9:257-288.
5. R.Banerjee. Nanoparticles for respiration drug delivery. In: Domb AJ, Tabata Y, Kumar MNVR, Farber S, editors. Nanoparticles for pharmaacutical application. Stevenson Ranch: Amercan scientific publishers, 2007.
6. Gref R, Couvreur P, Barratt G, Mysiakine E. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials 2003;24:4529-4537.
7. Jemal A, Siegel R, Ward E, Murray T, Xu J, CarolSmigal, et al. Cancer Statistics, 2006. CA Cancer J Clin 2006;56:106-130.
8. Kumar MNVR, M. Sameti CK, Lamprecht A, Lehr CM. Polymeric nanoparticles for drugand gene delivery. In: Nalwa HS, editor. Encyclopedia of Nanoscience and Nanotechnology: American Scientific Publishers, 2004. p. 1-19.
9. NOH. 九十六年台灣地區主要死亡原因. 2007 [cited; Available from: http://www.doh.gov.tw/statistic/data/衛生統計叢書2/96/記者會專區/表1.xls
10. NOH. 九十六年台灣地區主要癌症死亡原因 2007 [cited; Available from: http://www.doh.gov.tw/statistic/data/衛生統計叢書2/96/記者會專區/表8.xls
11. Boyer MJ. Drug therapy of lung cancer. Australian Prescriber 2003;26(5):103-105.
12. Smith J. Erlotinib: small-molecule targeted therapy in the treatment of non-small-cell lung cancer. Clinical Therapeutics 2005;27(10):1514-1534.
13. Non-small cell lung cancer (PDQ): Treatment 2005. 2005 [cited 2005 February 28 ]; Available from: http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/
14. Lindsey LP, & Thielvoldt, D. (1999). Non-small cell lung cancer. In C. Miaskowski & P., Buchsel (Eds.). Oncology nursing: Assessment and clinical care (pp. 1331-1352). St. Louis, Mosby. M.
15. Ginsberg RJ, Vokes EE, Rosenzweig K. Non-small cell lung cancer. In V.T. In: DeVita J, Hellman S, Rosenberg SA, editors. Cancer: Principles & practice of oncology: Philadelphia: Lippincott Williams & Wilkins, 2001. p. 925-982.
16. American Cancer Society. Cancer facts and figures 2005. Available at: http://www.cancer.org/docroot/STT/stt_O.asp. Accessed February 28.
17. National Cancer Institute. Surveillance E, and End Results (SEER). Seer Star database. Cancer Stat Facts: Cancer of the Lung. Available at: www.seer.cancer.gov/statfacts/htm I/u ngb/lu ngb. html?statfacts page =lungb.html&x=18&y=20. Accessed March 22, 2005.
18. American Cancer Society. (2003b). How is lung cancer staged? Retrieved June 2, from http://www.cancer.org/docroot/CRI/content/CRI_2_4_3X_How_is_lung_cancer _staged_26.asp?sitearea=.
19. National Comprehensive Cancer Network (NCCN). (2004). Clinical practice guidelines in oncology™ – Non-small cell lung cancer. Version 1.2004. Retrieved July 14, http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site.
20. Ramalingam S, Belani C. Systemic Chemotherapy for Advanced Non-Small Cell Lung Cancer: Recent Advances and Future Directions. The Oncologist 2008;13(suppl 1):5-13.
21. Arriagada R, Bergman B, Dunant A. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 2004;350:351-360.
22. Dillman RO, Seagren SL, Propert KJ. A randomized trial of induction chemotherapy plus high-dose radiation versus radiation alone in stage III non-small-cell lung cancer. . N Engl J Med 1990;323:940-945.
23. Shepherd FA, Pereira JR, Ciuleanu T. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005(353):123-132.
24. Sandler A, Gray R, Perry MC. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355:2542-2550.
25. Tiseo M, Ardizzon A. Cisplatin or carboplatin in the treatment of non-small cell lung cancer: a comprehensive review. Oncol Rev 2007;1:162-169.
26. Giaccone G. Twenty-five years of treating advanced NSCLC: what have we achieved? Ann Oncol 2004;15:Siv81-Siv83.
27. Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 2003;63:8977- 8983.
28. Ponzani V, Bressolle F, Haug IJ, Galtier M, Blayac JP. Cisplatin-induced renal toxicity and toxicity -modulating strategies: review. Cancer Chemother Pharmacol 1994;35:1-9.
29. Johnson SW, O'Dwyer PJ. Pharmacology of cancer chemotherapy: cisplatin and its analogues. In: DeVita J, Hellman S, Rosenberg SA, editors. Cancer: Principles and Practice of Oncology. 7th ed: Philadelphia: Lippincott Williams & Wilkins, 2005. p. 344-358.
30. Cleare MJ, Hydes PC, Malerbi BW, Watkins DM. Anti-tumor platinum complexes: relationships between chemical properties and activity. Biochimie 1978;60:835-850.
31. Kratz F, Schutte MT. Anticancer-metal complexes and tumor targeting strategies. Cancer J 1998;11:60-67.
32. Langer CJ, Gandara DR, Calver P, Edelman MJ, Ozols RF. Gemcitabine and carboplatin in combination: An update of phase I and phase II studies in non-small cell lung cancer. . Seminars in Oncology 1999;26: 12-18.
33. Kim ES, Khuri FR, Herbst RS. Epidermal growth factor receptor biology (IMC-C225). Curr Opin Oncol 2001;13:506-513.
34. SB N, CC B. stratiges for inhibitev EGFR signal. Drugs 2000;59:753-767.
35. Ciardiello F, Caputo R, Bianco R. Antitumor effect and potentiation of cytotoxic drugs anctivity in human cancer cells by ZD-1839 (Iressa), an epidermoid growth factor receptorselective tyrosine kinase inhibitor. . Clin Cancer Res
2000;6:2053-2063.
36. Magne N, Fischel J, Dubreuil A. Influence of epidermal growth factor receptor (EGFR), p53 and intrinsic MAP kinase pathway status of tumor cells on the antiproliferative effect of ZD1839 (Iressa). Br J Cancer 2002;86:1518-1523.
37. Ciardiello F, Caputo R, Bianco R. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2001;7:1459-1465.
38. Satoh H, Ishikawa H, Nakayama M, Fujiwara M, Ohtsuka M, Sekizawa K. Cell growth after withdrawal of gefitinib (Iressa, ZD1839) in human lung cancer cells. Oncology Reports 2004;12:615-619.
39. Ciardiello F, Vita FD, Orditura M, Tortora G. The role of EGFR inhibitors in nonsmall cell lung cancer. Current Opinion in Oncology 2004;16:130-135.
40. Franklin W.A., R. V, F.R. H, B.A. H, Jr. P.A. B. Epidermal growth factor receptor family in lung cancer and premalignancy. Seminars in Oncology 2002;29 (Suppl. 4):3-14.
41. JR W. tumor migration, invasive. Pharmacol Ther 1999;82:241-250.
42. Fan Z, Lu Y, Wu X, Mendelsohn J. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferationof A431 squamous carcinoma cells. J Biol Chem 1994;269:27595-27602.
43. Weyergang A, Selbo PK, Berg K. Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF-saporin. J Control Release 2006;111:165-173.
44. Proske D, Michael Blank, Buhmann R, Resch A. Aptamers - basic research, drug development, and clinical applications. Appl Microbiol Biotechnol 2005;69:367-374.
45. Yip WL, Weyergang A, Berg K, Tonnesen HH, Selbo PK. Targeted delivery and enhanced cytotoxicity of Cetuximab-Saporin by photochemical internalization in EGFR-positive cancer cells. Mol Pharm 2007;4:241-251.
46. Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006;5.
47. J. Kreuter and P. Speiser. In vitro studies of poly(methylmethacrylate) adjuvants. J Pharm Sci 1976;65:1624-1627.
48. Turos E, Reddy GSK, Greenhalgh K, Ramaraju P, Abeylath SC, Jang S, et al. Penicillin-bound polyacrylate nanoparticles: Restoring the activity of β-lactam antibiotics against MRSA Bioorganic & Medicinal Chemistry Letters 2007;17:3468-3472.
49. Dailey LA, Kleemann E, Wittmar M, Gessler T, Schmehl T, Roberts C, et al. Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharmaceutical Research 2003;20:2011-2020.
50. Ye H, Jin L, Hu R, Yi Z, Li J, Wu Y, et al. Poly(g,L-glutamic acid)–cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials 2006;27 5958-5965.
51. Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-Chitosan nanoparticles by A549 Cells. Pharm Res 2002;19 1488-1494.
52. Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 2001;74:317-323.
53. Kaul G, Amiji. M. Long-circulating poly(ethylene-glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 2002;19(7):1061-1067.
54. Coester CJ, Langer K, Briesen HV, Kreuter J. Gelatin nanoparticles by two step desolvation - a new preparation method, surface modifications and cell uptake. J Microencapsul 2000;17:187-193.
55. Peppas NA. an introduction to materials in medicine. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science. New York: Academic Press, 1996. p. 60-64.
56. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 2005;109:256-274.
57. Truong-Le VL, Walsh SM, Schweibert E, Mao H-Q, Guggino WB, August JT, et al. Gene transfer by DNA-gelatin nanospheres Arch Biochem Biophys 1999;361(1):47-56.
58. Kaul G, Amiji M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res 2005;22(6):951-961.
59. Michaelis M, Langer K, Arnold S, Doerr H-W, Kreuter J, Jr JC. Pharmacological activity of DTPA linked to protein-based drug carrier systems. Biochemical and Biophysical Research Communications 2004;323: 1236-1240.
60. Nahar M, Mishra D, Dubey V, Jain NK. Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 2008.
61. Balthasar S, Michaelis K, Dinauer N, Briesen Hv, Kreuter J, Langer K. Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 2005;26:2723-2732.
62. Morimoto K, Katsumata H, Yabuta T, Iwanaga K, Kakemi M, Tabata Y, et al. Gelatin microspheres as a pulmonary delivery system: evaluation of salmon calcitonin absorption. J Pharm Pharmacol 2000;52:611-617.
63. Deaton AT, Jones LD, Dunbar CA, Hickey AJ, Williams DM. Generation of gelatin aerosol particles from nebulized solutions as model drug carrier systems. Pharm Dev Technol 2002;7:147-153.
64. Sham J-H, Zhang Y, Finlay WH, Roa WH, R. L. Formulation and characterization of spraydried powders containing nanoparticles for aerosol delivery to the lung. . International Journal of Pharmaceutics 2004;269:457-467.
65. Green NM. Avidin. Biochem J 1963;89:585- 591.
66. Green NM. Avidin. Adv Protein Chem 1975;29:85- 133.
67. Lee H, Kim TH, Park TG. A receptor-mediated gene delivery system using streptavidin and biotin-derivatized, pegylated epidermal growth factor. Journal of Controlled Release 2002;83 109-119.
68. Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet 1995;345:176-178.
69. Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PHM, Verbruggen A, Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 2001;164:1665-1668.
70. MacNee W, Donaldson K. How can ultrafine particles be responsible for increased mortality. Monaldi Arch Chest Dis 2000;55:135-139.
71. Dougherty L. Combination chemotherapy and chemotherapy principles. In: Wood DBM, editor. The royal Marsden hospital handbook of cancer chemotherapy. London: ELSEVIER CHURCHILL LIVINGSTONE, 2005.
72. V. H. L. Lee, J.J. Yang. Drug Delivery and Targeting : For Pharmacists and Pharmaceutical Scientists. New York: Taylor & Francis, 2001.
73. Simard P, Lerous J-c, Allen c, Meyer O. Liposomes for drug delivery. In: Domb AJ, Tabata Y, Kumar MNVR, Farber S, editors. Nanoparticles for pharmaacutical application. Stevenson Ranch: Amercan scientific publishers 2007.
74. Cryan SA. Carrier-base strategies for targeting protein and peptide drugs to the lungs. AAPS J 2005;7(1):E20-E40.
75. Asghar A, Henrickson RL. Chemical, biochemical, functional, and nutritional characteristics of collagen in food systems. Adv Food Res 1982;28 231- 372.
76. Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, et al. Recombinant collagen and gelatin for drug delivery. Advanced Drug Delivery Reviews 2003;55:1547- 1567.
77. Djagny KB, Wang Z, Xu S. Gelatin: A Valuable Protein for Food and Pharmaceutical Industries: Review. Critical Reviews in Food Science and Nutrition 2001;41(6):481-492.
78. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release 2005;109:256- 274.
79. Usta M, Piech DL, MacCrone RK, Hillig WB. Behavior and properties of neat and filled gelatins. Biomaterials 2003;24:165-172.
80. Idson B, Braswell E. Gelatin. Adv Food Research 1957:235-338.
81. Charley H. Gelatin. In: Food Science. 2nd ed. New Jersey: Prentice-Hall, inc., 1992.
82. Marty JJ, Oppenheim R, Speiser P. Nanoparticles a new colloidal drug delivery system. Pharm Acta Helv 1978;53:17-23.
83. Pezron I, Djabourov M, Leblond J. Conformation of gelatin chains in aqueous solutions: 1. A light and small-angle neutron scattering study Polymer 1991; 32:3201-3210.
84. Azarmi S, Huang Y, Chen H, McQuarrie S, Abrams D, Roa W, et al. Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. J Pharm Pharmaceut Sci 2006;9:124-132.
85. Yamazaki N, Kojima S, Bovin NV, Andre S, Gabius S, Gabius HJ. Endogenous lectins as targets for drug delivery. Adv Drug Deliv Rev 2000;43:225-244.
86. Bennis S, Chapey C, Couvreur P, Robert J. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumor cells in culture. Eur J Cancer 1994;30A:89-93.
87. Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Deliv Rev 2004;56:1127-1141.
88. Ciardiello F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs 2000;60(Suppl 1):25-32.
89. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22: 7265-7279.
90. Eastman A. The formation, isolation, and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Thel 1987b;34:155-166.
91. Zanen P, Lammers JW. Recing adverse effect of inhaled fenoterol through optimization of the aerosol formulation. J Aerosol Med 1999;12:241-247.
92. Hoet PH, Hohlfeld IB, Salata OV. Nanoparticles - known and unknown health risks. J Nanobiotechnology 2004;2:1-15.
93. Hermanson GT. Antibody modification and conjugation. Bioconjugate Techniques. San Diego: Academic Press, 1996. p. 465.
94. Zhang M. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells. Acta Pharmacol Sin 2004;1(25):61-67.
95. Koshkina NV, Waldrep JC, Roberts LE, Golunski E, Melton S, Knight V. Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin Cancer Res 2001;7:3258-3262.
96. Kullberg EB, Bergstrand N, Carlsson J, Edwards K, Johnsson M, Sjoerberg S, et al. Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents. Bioconjugate Chem 2002;13:737-743.
97. Kaul G, Amiji M. Biodistribution and targeting potential of poly(ethylene glycol) modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target 2004;12:585-591.
98. Konishi M, Tabatab Y, Kariya M, Suzuki A, Mandai M, Nanbu K, et al. In vivo anti-tumor effect through the controlled release of cisplatin from biodegradable gelatin hydrogel. Journal of Controlled Release 2003;92 301- 313.
99. Leo E, Vandelli MA, Cameroni R, Flavio F. Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde : involvement of the drug in the cross-linking. Int J Pharm 1997;155:75-82.
100. Vandervoort J, Ludwig A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm 2004;57:251-261.
101. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-1659.
102. Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 2001;46:149-168.
103. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001;7:987-989.
104. Gorostiza P, Tombola F, Verdaguer A, Smith SB, Bustamante C, Isacoff EY. Molecular handles for the mechanical manipulation of single-membrane proteins in living cells. IEEE Trans Nanobiosci 2005;4:269-276.
105. Gupta AK, Gupta M, Yarwood SJ, Curtis ASG. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Control Release 2004; 95:197- 207.
106. Kirpotin D PJ, Hong K, Zalipsky S, Li WL, Carter P, Benz CC, Papahadjopoulos D. Sterically stabilized anti-HER2 immunoliposomes: Design and targeting to human breast cancer cells in vitro. Biochem 1997;36:66-75.
107. Raben D, Helfrich B, Chan DC, Ciardiello F, Zhao L, Franklin W, et al. The Effects of Cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res 2005;11:795-805.
108. Nielsen UB, Kirpotin DB, Pickering EM, Hong K, Park JW, Shalaby MR, et al. Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim Biophys Acta 2002;1591:109-118.
109. .Planck SR, Finch JS, Magun BE. Intracellular processing of epidermal growth factor II, intracellular cleavage of the COOH-terminal region of 125I-epidermal growth factor. J Biol Chem 1984;259( 5):3053-3057.
110. Lee H, Kim TH, Park TG. A receptor-mediated gene delivery system using streptavidin and biotin-derivatized, pegylated epidermal growth factor. J Control Release 2002; 83:109-119.
111. Krupp MN, Connolly DT, Lane MD. Synthesis, turnover and down-regulation of epidermal growth factor receptors in human A431 epidermal carcinoma cells and skin fibroblasts. J Biol Chem 1982;257:11489-11496.
112. Koshkina NV, Agoulnik IY, Melton SL, Densmore CL, Knight V. Biodistribution and pharmacokinetics of aerosol and intravenously administered DNA-polyethyleneimine complexes: optimization of pulmonary delivery and retention. Mol Ther 2003;8:249-254.
113. Koshkina NV, Kleinerman ES, Waldrep C, Jia S-F, Worth LL, Gilbert BE, et al. 9-Nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice. Clin Cancer Res 2000;6:2876-2880.
114. Knowles M, Boucher R. Mucus clearance as a primary innate defense mechanism for mammalian airways. Journal of clinical investigation 2002;109(5):571-577.
115. Guyton AC, Hall JE. Textbook of medical physiology 9E ed. Singapor: Harcour Asia Pte Ltd, 2000.
116. Tseng C-L, Wang T-W, Dong G-C, Wu SY-H, Young T-H, Shieh M-J, et al. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 2007;28:3996-4005.
117. Dalby R, Tiano S, Hickey AJ. Medical devices for the delivery of therapeutic aerosols to the lungs. In Inhalation aerosols: physical and biological basis for therapy. New York: Marcel Dekker, Inc, 1996.
118. Schurch S, Gehr P, Im Hof V, Geiser M, Green F. Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 1990;80:17-32.
119. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: Large porous carriers of nanoparticles for drug delivery. PNAS 2002;99:12001-12005.
120. Zhou Z, Kozlowski J, Schuster DP. Physiologic, biochemical, and imaging characterization of acute lung injury in mice. Am J Respir Crit Care Med 2005;172:344-351.
121. Hoy A, Muller BL, Kutter D, Siest G, Visvikis S. Growing significance of myeloperoxidase in non-infectious diseases. Clin Chem Lab Med 2002;40:2-8.
122. Geys J, Coenegrachts L, Vercammen J, Engelborghs Y, Nemmara A, Nemery B, et al. In vitro study of the pulmonary translocation of nanoparticles: a preliminary study. Toxicol Lett 2006;160:218-226.
123. Nemmar A, Hoylaerts MF, Hoet PHM, Dinsdale D, Smith T, Xu H, et al. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 2002;166:998-1004.
124. Carlsson J, Blomquist E, Gedda L, Liljegren A, Malmstroerm P-U, stroerm AS, et al. Conjugate chemistry and cellular processing of EGF-Dextran. Acta Oncol 1999;38:313-321.
125. Sznajder JI, Ridge KM, Yeates DB, Ilekis J, Olivera W. Epidermal growth factor increases lung liquid clearance in rat lungs. J Appl Physiol 1998;85:1004-1010.
126. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007;9:257-288.
127. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 2003;55:403-419.
128. Cenni B, Aebi S, Nehme A, Christen RD. Epidermal growth factor enhance cisplatin-induced apoptosis by caspase 3 independent pathway. Cancer chemother Pharmacol 2001;47:397-403.
129. Levi FA, Hrushesky WJ, Halberg F, Langevin TR, Haus E, Kennedy BJ. Lethal nephrotoxicity and hematologic toxicity of cis-diamminedichloroplatinum ameliorated by optimal circadian timing and hydration. Eur J Cancer Clin Oncol 1982;18:471- 477.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40413-
dc.description.abstract近年來癌症一直是國內十大死因排名的首位,且肺癌更居國人癌症死亡之冠。儘管醫學已有相當進展,目前肺癌的長期存活率甚低,且傳統化療之副作用多,因此尋找有效的治療方式實為當務之急。奈米藥物載體經由適當的表面修飾,可達到穩定藥物且具有傳送藥物至癌症區域的功能。奈米藥物載體以呼吸給藥之方式近幾年才開始發展。其給藥效果比一般口服式的藥物來的有效率且直接,因此本研究製備可標的癌細胞表面表皮生長因子受器(EGF receptor, EGFR)之導向奈米明膠顆粒 (gelatin nanoparticles, GPs),並結合肺癌第一線化療用藥-順鉑 (cisplatin, CDDP),以達到標靶治療的效果。並選擇吸入方式給藥,將藥遞送至肺癌老鼠,以評估其治療效果。
本研究的第一部分為製備具標的EGFR功能之明膠粒子,並確認其體外( in vitro)與體內(in vivo)之標的功能。奈米明膠顆粒(GPs)表面與卵白素(NeutrAvidin)鍵結後(GP-Av),再結合以生物素修飾之表皮生長因子(GP-Av-bEGF),以達到標的EGFR過度表現之癌細胞。經過多層修飾後的明膠奈米顆粒並無顯著差異,其顆粒大小為220 nm、表面電位為 - 9.3 mV。比較不同EGFR表現量之細胞: 由於A549細胞表面有較高EGFR表現,因此其細胞內累積量明顯高於其他細胞;且A549 細胞內之奈米明膠顆粒累積量與劑量及時間有依存性。以共軛焦顯微鏡觀察顆粒於細胞內之分布,可觀察A549細胞以GP-Av-bEGF顆粒培養有較多的綠色螢光分佈,同時顆粒位於溶小體(lysosome)內。於此確認於細胞階段可有效標的EGFR過度表現細胞。
接著,建立老鼠肺癌模式,使用霧化器以吸入方式給予奈米顆粒之體內模式。明膠奈米溶液霧化噴出之粒子,其霧化顆粒99 % 位於0.5–5µm,此粒徑可確保顆粒有效達到肺泡並直接由人體吸收。吸入給藥的安全性以肺水腫 (lung edema)及肺部髓質過氧化酶 (myeloperoxdiase, MPO)分析,確認無急性肺部發炎情形。體內螢光分佈分析,觀察到以EGF修飾之顆粒(GP-Av-bEGF)集中於癌症誘發之老鼠肺部,顯示其可有效標的癌症細胞;反之未以EGF修飾之顆粒(GP-Av)並無此功能。此明膠奈米顆粒表面修飾EGF並以霧化器吸入方式,仍可保有EGF之活性,並於動物體內可標的EGFR過度表現之癌細胞。
本研究的第二部分則進行明膠奈米顆粒包覆順鉑(CDDP)之抗癌測試。明膠顆粒包覆順鉑,再加以EGF表面修飾之奈米顆粒(GP-CDDP-bEGF)進行體外抗癌測試,顯示其較未經表面修飾之明膠順鉑載體(GP-CDDP)及順鉑溶液 (free CDDP)於低劑量時即可有效殺死癌效胞。A549細胞內之順鉑累積量以GP-CDDP-bEGF組為最高。而PI染色及流式細胞儀分析結果顯示: GP-CDDP-bEGF作用四小時後,細胞sub-G1 peak有顯著增加,顯示明膠顆粒包覆順鉑並以bEGF修飾表面 (GP-CDDP-bEGF)之載體,於細胞培養階段可快速影響癌細胞周期,且達到抗癌效果。
於抗癌動物實驗,不同劑型之順鉑載體(free CDDP,GP-CDD, GP-CDDP-bEGF)皆以CDDP濃度12 mg/kg給藥,於治療四次後進行評估。肺癌老鼠的肺部順鉑累計量,以GP-CDDP-bEGF組最高,而於腎之累計量低,可降低使用此藥之副作用;且由血液分析肝腎功能顯示 GP-CDDP-bEGF除了可提高藥於肺部的累積量之外,且較無毒性。而現階段不同劑型之順鉑載體應用於動物實驗,其抗癌效果並無明顯差異。檢討之可能因素為實際肺部之累計藥量尚未達到有效治療之劑量所致。
綜合以上之結果,明膠奈米顆粒包覆順鉑且經表面修飾EGF(GP-CDDP-bEGF)之載體,於體外測試顯示具有效標的及毒殺EGFR過度表現之癌細胞,具抗癌效果。於動物實驗顯示以霧化吸入給藥方式,並不會損害EGF的活性,表面修飾EGF之奈米載體仍具有於體內標的EGFR表現之細胞功能;而體內抗癌效果則需再更進一部確認。此研究初步建立了將標靶式奈米藥物載體以吸入方式傳遞之給藥模式,未來若可進一步應用此簡易且非侵入式之給藥方式,對癌症病患而言是一大福音。
zh_TW
dc.description.abstractLung cancer is one of the most harmful forms of cancer. The long-term survival rate of lung cancer patients treated by conventional modalities remains far from satisfactory. Encapsulated anticancer drugs in nanocariers, can protect not only the integrity of drugs during transport in circulation but also the normal tissues from the toxicity. To develop an effective drug delivery system for lung cancer therapy, gelatin nanoparticles (GPs) were modified with NeutrAvidinFITC-biotinylated epidermal growth factor (bEGF) to form EGF receptor (EGFR)-seeking nanoparticles (GP-Av-bEGF). And cisplatin (cis-dichlorodiammine- platinum (II), CDDP) was incorporated in nanocarriers for active targeting. Aerosol droplets of nanocarriers were generated by using a nebulizer and delivered to mice model of lung cancer via aerosol delivery.
Firstly, preparing the EGF modified nanoparticle is required. The results showed that the modification process had no significant influence on particle size (220 nm) and zeta potential (- 9.3 mV). By the in vitro test, GP-Av-bEGF resulted in higher entrance efficiency on adenocarcinoma cells (A549) than that on normal lung cells (HFL1) because A549 possessed greater amounts of EGFR. We also found that uptake of GP-Av-bEGF by A549 cells was time and dose dependent. Confocal microscopy confirmed the cellular internalization of GP-Av-bEGF, and more fluorescent spots of these nanoparticles were obviously observed as well as lysosomal entrapment in A549.
Secondly, the effect of aerosol delivery was confirmed. Analysis of the aerosol size revealed that 99 % of the nanoparticles after nebulization had a mass median aerodynamic diameter (MMAD) within the suitable range (0.5–5µm) for lower airway deposition. The safety of inhaled nanoparticles was examined by lung edema and myeloperoxidase (MPO) activity assay. There’s no finding suggestive of acute lung inflammation following inhalation. The fluorescence images obtained from live mice with lung cancer showed the GP-Av-bEGF could target the cancerous lungs in a more specific manner. Fluorescence analysis of the organs revealed that the GP-Av-bEGF was mainly distributed in cancerous lungs. In contrast, nanoparticle accumulation was lower in normal lungs. Results of theses two parts revealed that GP-Av-bEGF could target to the EGFR-over expression cancer cells in vitro and vivo.
The anticancer activities were studied by cisplatin (CDDP) incorporated in gelatin nanoparticles with or without EGF modification. The in vitro anticancer study showed GP-CDDP-bEGF was more potent than free CDDP and GP-CDDP, due to a rapid onset of action to cell cycle and with the lower IC 50 at 4.23 uM for the inhibition of A549 cell growth. Cells treated by GP-CDDP-bEGF for only 4 hr had the highest sub-G1 phase from PI stain. The result of intracellular Pt accumulation shows that higher amount of Pt was accumulated in cells treated by GP-CDDP-bEGF.
The CDDP formulations: free CDDP, GP-CDDP and GP-CDDP-bEGF were given as 4 doses at an equivalent CDDP dose of 12 mg/kg with 4-day intervals between inhalation to A549 lung meta mice. This treatment showed GP-CDDP-bEGF was less toxic and also had been concentrated in the EGFR overexpressed cells according to the higher Pt accumulation in cancerous lung. The anticancer effect of the cancerous mice treated by these CDDP formulations via inhalation, unfortunately it had no significant difference in vivo. It may result from the insufficient dosage deposition to the lungs.
To summarize, the gelatin nanoparticles with CDDP incorporated and decorated with EGF tumor specific ligands were successfully development. The in vitro targeting and anticancer effect is confirmed. And the aerosol delivery of nanodrug carrier was set up and may prove to be beneficial drug carriers when administered by simple aerosol delivery for the treatment of lung cancer patients for clinical using.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:47:00Z (GMT). No. of bitstreams: 1
ntu-97-D91548001-1.pdf: 2734310 bytes, checksum: 5a82f728f82a9427de16dc2b855cd474 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員審定書 ------------------------- I
致謝 ------------------------------------- II
Chinese abstract ---------------------- III
English abstract ------------------------ V
Contents ------------------------------ VII
Figure list --------------------------- XIII
Table list ---------------------------- XVII
Abbreviation list ---------------------- XVIII
Chapter 1 Introduction ----------------------------- 1
1.1 Lung cancer ------------------------------------ 1
1.1.1 Clinical classification ------------------ 1
1.1.2 Lung cancer stage ------------------------ 5
1.1.3 Lung cancer treatment -------------------- 6
1.1.3.1 Surgery ----------------------------- 8
1.1.3.2 Radiotherapy ------------------------- 9
1.1.3.3 Chemotherapy ------------------------ 10
1.1.3.3.1 Cisplatin ------------------ 11
1.1.3.3.2 Carboplatin --------------- 13
1.1.3.4 Targeting therapy ------------------ 14
1.1.3.4.1 EGFR targeting ------------ 14
1.2 Nanoparticles application in drug delivery ---- 18
1.2.1 Polymeric nanoparticles for drug delivery --- 19
1.2.2 Application of gelatin nanoparticles ---- 20
1.2.3 Applications of avidin-biotin system for drug
delivey ---------------------------------- 22
1.2.4. Safety of nanoparticles ---------------- 23
1.3 Route of drug administration ------------------- 24
1.3.1 Oral delivery --------------------------- 24
1.3.2 Parenteral delivery --------------------- 25
1.3.3 Transdermal delivery -------------------- 25
1.3.4 Pulmonary delivery --------------------- 26
1.3.4.1 Device using in pulmonary delivery -- 28
1.4 Purpose of this study ------------------------- 30
Chapter 2 Theoretical basis ------------------------ 31
2.1 Characterization of gelatin ------------------- 31
2.1.1 Desolvation method for gelatin nanoparticle
preparation ----------------------------------- 33
2.2 Tumor targeting ------------------------------- 34
2.2.1 Passive targeting ------------------------ 34
2.2.2 Active targeting ------------------------- 36
2.3 Antitumor effect by forming cisplatin adduts -- 38
2.4 Anatomy and physiology of lungs --------------- 39
2.4.1 Airway anatomy --------------------------- 40
2.5 Aerosol delivery ------------------------------ 42
2.5.1 Mass median aerodynamic diameter --------- 43
2.5.2 Mucociliary clearance -------------------- 43
2.5.3 Alveolar macrophage clearance ------------ 44
Chapter 3 Materials and methods -------------------- 47
3.1 Materials -------------------------------------- 47
3.2 Experiment equipments -------------------------- 49
3.3 Preparing EGF ligand modified nanoparticle for in
vitroand in vivo targeting ------------------------- 51
3.3.1 Preparation of gelatin nanoparticles with
biotinylated EGF conjugation - ---------------- 52
3.3.1.1 Preparation of gelatin nanoparticles (GPs)-- 52
3.3.1.2 NeutrAvidinFITC conjugated on the surface of
GPs ------------------------------------- 52
3.3.1.3 Biotinylated EGF binding to NeutrAvidinFITC-
GPs ----------------------------------- 53
3.3.2 Characterization of GPs --------------------- 56
3.3.2.1 Photon correlation spectroscopy (PCS) ---- 56
3.3.2.2 Zeta potential ----------------------- 56
3.3.2.3 TEM ----------------------------------- 56
3.3.2.4 AFM ----------------------------------- 56
3.3.2.5 Surface plasmon resonance (SPR) analysis - 57
3.3.3 In vitro analysis -------------------------- 57
3.3.3.1 Cell Culture -------------------------- 57
3.3.3.2 Cytotoxicity analysis (MTT) ---------- 58
3.3.3.3 EGFR quantification ------------------- 58
3.3.3.4 Cellular uptake ----------------------- 59
3.3.3.5 Confocal microscopy assay ------------- 59
3.3.4 In vivo analysis --------------------------- 61
3.3.4.1 Cell and pulmonary tumor metastases ---- 62
3.3.4.2 Characterization of aerosol particles --- 62
3.3.4.3 In vivo aerosol delivery of GP-Av-bEGF -- 63
3.3.4.4 Fluorescent quantify of life mice and organs 63
3.3.4.5 Histological examination -------------- 63
3.3.4.6 Acute lung injury assay --------------- 64
3.3.4.6.1 Wet to dry lung weight ratios -------- 64
3.3.4.6.2 Myeloperoxidase assay ------------ 64
3.4 Preparation and in vitro anticancer evaluation of GP-
CDDP with bEGF modification --------------------- 66
3.4.1 Preparation of GP-CDDP with bEGF modification -- 67
3.4.1.1 Synthesis of GP–CDDP complex -------- 67
3.4.1.2 Preparation of bEGF modified GP-CDDP --- 67
3.4.2. Characterization of GP-CDDP ------------- 69
3.4.2.1 Drug release test ------------------- 69
3.4.3 In vitro anticancer assay ------------------ 69
3.4.3.1 MTT assay ---------------------------- 69
3.4.3.2 Intracellular Pt accumulation -------- 70
3.4.3.3 PI cell cycle assay ------------------ 70
3.4.3.4 Annexin-V apoptosis assay ----------- 71
3.4.4 In vivo antitumor evaluation -------------- 72
3.4.4.1 Lung cancer model ------------------- 72
3.4.4.2 CDDP accumulation in organs --------- 73
3.4.4.3 Animal toxicity --------------------- 73
3.4.4.4 Evaluation of anti cancer effect ---- 73
Chapter 4 Results --------------------------------- 74
4.1 Preparation of GPs with biotinylated EGF (in vitro
targeting) ---------------- ------------------- 74
4.1.1 Characterization of GPs with bEGF modification 74
4.1.2 Results of SPR analysis ------------------- 80
4.1.3 Cytotoxicity assays ----------------------- 82
4.1.4 Nanoparticles accumulation in specific cells - 82
4.1.5 Intracellular tracking of nanoparticles --- 89
4.2 Aerosol delivery of GP-Av-bEGF with in vivo targeting
ability ---------------------------------------- 92
4.2.1 Characterization of the nebulized GPs ----- 92
4.2.2 Safety of aerosol nanoparticles ----------- 94
4.2.3 Results of in vivo targeting --------------- 96
4.2.3.1 Distribution of the nanoparticles in live
mice --------------------------------- 96
4.2.3.2 Accumulation of the nanoparticles in organs 97
4.2.3.3 Histological examination ------------- 102
4.3 Results of preparation and in vitro anticancer
evaluation of GP-CDDP --------------------------- 105
4.3.1 Optimum parameters for GP-CDDP preparation - 105
4.3.1.1 Results of FT-IR --------------------- 108
4.3.1.2 Release profiles of GP-CDDP ---------- 110
4.3.1.3 AFM observation ---------------------- 112
4.3.2 In vitro anticancer activity -------------- 115
4.3.3 Intracellular Pt accumulation ------------ 118
4.3.4 Effect of CDDP on cell cycle progression -- 120
4.4In vivo anticancer effect of different CDDP formulas 122
4.4.1 Pt distribution following the aerosol delivery -122
4.4.2 In vivo anticancer activity -------------- 124
4.4.3 Animal toxicity -------------------------- 127
4.4.3.1 Results of nephrotoxicity and hepatotoxicity
assay --------------------------------- 127
Chapter 5 Discussion ------------------------------ 132
5.1 Development of gelatin nanoparticles with biotinylated
EGF conjugation for lung cancer targeting ----- 132
5.2 Targeting efficiency and biodistribution of
biotinylated-EGF-conjugated gelatin nanoparticles
administered via aerosol delivery in nude mice with
lung cancer ----------------------------------- 135
5.3 Cisplatin-gelatin nanocomplex: potential of anticancer
treatment by surface conjugation for EGFR target in
mice lung cancer model via inhalation ---------- 140
Chapter 6 Conclusion ------------------------------ 144
Chapter 7 Future work ---------------------------- 146
Reference ---------------------------------------- 147
Appendix A Resume --------------------------------- 156
Appendix B Publication List ----------------------- 157
dc.language.isoen
dc.title吸入給藥方式遞送以EGFR為標的之奈米明膠-順鉑藥物載體於肺癌治療之探討zh_TW
dc.titleInvestigation of EGFR-targeted gelatin nanoparticles incorporated with cisplatin for lung cancer therapy via aerosol deliveryen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee宋信文,郭宗甫,楊重熙,董國忠,何主亮,張金堅,Sivasubramanian Savitha
dc.subject.keyword明膠,奈米顆粒,肺癌,呼吸給藥,癌症標的,表皮生長因子,zh_TW
dc.subject.keywordgelatin,nanoparticles,l ung cancer,aerosol delivery,tumor-targeting,EGF,en
dc.relation.page158
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved