請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40401完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳延平 | |
| dc.contributor.author | Shu-Yu Chen | en |
| dc.contributor.author | 陳淑鈺 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:46:41Z | - |
| dc.date.available | 2010-08-06 | |
| dc.date.copyright | 2008-08-06 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | Bernes, A. R., Huvard, G. S., Korsmeyer, R. W., Kkunig, F. W., Application of compressed carbon dioxide in the incorporation of additives into polymers, J. Appl. Polym. Sci., 46, 231-242 (1992)
Chen, S. h., Liou, R. M., Hsu, C. S., Chang, D. J., Yu, K. C., Chang, C. Y., Pervaporation separation water/ethanol mixture through lithiated polysulfone membrane, J. Membr. Sci., 193, 59-67 (2001) Chen, S. h., Yu, K. C., Lin, S. S., Chang, D. J., Liou, R. M., Pervaporation separation water/ethanol mixture through lithiated polysulfone membrane, J. Membr. Sci., 183, 29-36 (2001) Chen, Y., Lin, A., Gan, F., Improvement of polyacrylate coating by filling modified nano-TiO2, Appl. Surf. Sci., 252, 8635-8640 (2006) Daniels, M. W., Sefcik , J., Francis, L. F., McCormick, A. V., Reactions of a trifunctional Silane coupling agent in the presence of colloidal silica sols in polar media, J. Colloid Interface Sci., 219, 351–356 (1999) Hasegawa, N., Kawasumi, M., Kato, M., Usuki, A., Okada, A., Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligimer, J. Appl. Polym. Sci., 67, 87-92 (1998) Hayes, H. J. and McCarthy, T. J., Maleation of poly(4-methyl-1-pentene) using supercritical carbon dioxide, Macromolecules, 31, 4813-4819 (1998) Hong, R. Y., Qian, J. Z., Cao, J. X., Synthesis and characterization of PMMA grafted ZnO nanoparticles, Powder Technol., 163, 160-168 (2006) Iijima, M., Tsukada, M., Kamiya, H., Effect of particle size on surface modification of silica namoparticles by using silane coupling agents and their dispersion stability in methylethylketone, J. Colloid Interface Sci. 307, 418-424 (2007) Im, J. S., Lee,J. H., An, S. K., Song, K. W., Jo, N. J., Lee, J. O., Yoshinaga, Kohji., Preparation and properties of polyimide/Silica hybrid composites based on polymer-modification colloidal silica, J. Appl. Polym. Sci., 100, 2053-2061 (2006) Jung, J., Perrut, M., Particle design using supercritical fluids: Literature and patent survey, J. Supercrit. Fluids, 20, 179-219 (2001) Kim, S., Kim, E., Kim, S., Kim, W., Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate, J. Colloid Interface Sci. 292, 93-98 (2005) Koegler, W. S., Patrick, C., Cima, M. J., Griffith, L. G., Carbon dioxide extraction of residual chloroform from biodegradable polymers, J. Biomed. Mater. Res., 63, 567-576 (2002) Ko, Y. G., Kim, Y. H., Paek, K. D., Lee, H. J., Lee, W. K., Park, H. D., Kim, S. h., Lee, G. S., Ahn, D. J., Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation, Biomaterials, 22, 2115-2123 (2001) Lee, L. J., Zeng, C., Cao, X., Han, X., Shen, J., Xu, G., Polymer nanocomposite foams, Compos. Sci. Technol., 65, 2344-2363 (2005) Ma, C. C. M., Chen, Y. J., Kuan, H. C., Polystyrene nanocomposite materials: Preparation morphology, and mechanical, electrical, and thermal properties, J. Appl. Polym. Sci., 98, 2266-2273 (2005) Mullee, W. H., De Leeuwe, M., Roberson Jr., G. A., Removal of CMP residue from semiconductors using supercritical carbon dioxide process, Patent 6,277,753 (2001) Mo, T. C., Wang, H. W., Chen, S. Y., Dong, R. X., Kuo, C. H., Yeh, Y. C., Synthesis and characterization of polyimide-silica nanocomposites using novel fluorine-modified silica nanoparticles, J. Appl. Polym. Sci., 104, 882-890 (2007) Nho, Y. C., Kwon, O. H., Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film, Radiation Physics and Chemistry, 66, 299-307 (2003) Nocun’, M., Siwulski, S., Leja, E., Jedlin’ski, J., Structural studies of TEOS- tetraethoxytitanate based hybrids, Opt. Mater., 27, 1523-1528 (2005) Ratner, B. D., Hoffman, A. S., Hanson, S. R., Harker, L. A., Whiffen, J. D., Blood-conpatibility-water-contentent relationship for radiation-grafted htdrogels, J. Polym. Sci., Polym. Symp., 66, 363-376 (1979) Ree, M., Nunes, T. L., Czornyj, G., Volksen, W., Residual stress behavior of isomeric PMDA-ODA polyimide, Polym, 33, 1229-1236 (1992) Reverchon, E., Adami, R., Nanomaterials and supercritical fluids, J. Supercrit. Fluids, 37, 1-22 (2006) Rong, M. Z., Ji, Q. L., Zhang, M. Q., Friedrich, K., Graft polymerization of vinyl monomers onto nanosized alumina particles, Eur. Polym. J., 38, 1573-1582 (2002) Sangermano, Marco., Priola, A., Kortaberria, G.., Jimeno, A., Garcia, I., Mondragon, I., Rizza, G., Photopolymerization of epoxy coatings containing iron-oxide nanoparticles, Macromol. Mater. Eng., 292, 956-961 (2007) Seo, J., Han, C. S., Han, H., Water-sorption behaviors of poly(3,4’-oxydiphenylene pyromellitimide) films depending on the thickness variation, J. Polym. Sci. Part B: Polym Phys, 39, 669-676 (2001) Steen, M. L., Jordan, A. C., Fisher, E. R., Hydrophile modification of polymer membranes by low temperature H2O plasma treatment, J. Membr. Sci., 204, 341-357 (2002) Stoffel, N. C., Kramer, E. J., Volksen, W., Russell, T. P., Imidization and interdiffusion of poly(amic ethyl ester) precursors of PMDA/3,4’-ODA, J. Polym. Sci. Part B: Polym Phys, 36, 2247-2258 (1998) Takeichi, T., Ogura, S., Takayama, Y. J., Soluble Polyimides that Contain Curable Internal Acetylene Groups in the Backbone, Polym. Sci.: Part A: Polym. Chem., 32, 579-585 (1994) Tsukahara, Y., Yamauchi, T., Kawamoto, T., Wada, Y., Functionalization of multi- walled carbon nanotubes realized by microwave- driven chemistry inducing dispersibility in liquid madia, Bull. Chem. Soc. Jpn., 81, 387-392 (2008) Wang, B. and Hu, L. , Optical and surface properties of hybrid TiO2/ormosil planar waveguide prepared by the sol–gel process, Ceramics International, 32, 7-12 (2006) Wang, Z. W., Wang, T. J., Wang, Z. W.,Jin, Y., Organic modification of nano-SiO2 particles in supercritical CO2, J. Supercrit. Fluids, 37, 125-130 (2006) Wavhal, D. S., Fisher, E. R., Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment, Desalination, 172, 189-205 (2005) Weimer, M. W., Chen, H., Giannelis, E. P., Sogah, D. Y., Direct Synthesis of Dispersed Nanocomposites by in Situ Living Free Radical Polymerization Using a Silicate-Anchored Initiator, J. Am. Chem. Soc., 121, 1615-1616 (1999) Weinstei, R. D., Gribbin, J. J., Muske, K. R., Solubility and salting behavior of several β-adrenergic blocking agents in liquid and supercritical carbon dioxide, J. Chem. Eng. Data., 50, 226-229 (2005) Yang, F. and Nelson, G. L., PMMA/Silica nanocomposite studies: synthesis and properties, J. Appl. Polym. Sci., 91, 3844-3850 (2004) Yen, C. T., Chen, W. C., Liaw, D. J., Lu, H. Y., Synthesis and properties of new polyimide-silica hybrid films through both intrachain and interchain bonding, Polym, 44, 7079-7087 (2003) Zhang, L., Zhang, D., Jin, Y., Zhang, P., Zhang, S., Surface modification of nano-SiO2 by in situ grafted polymerization of butyl methacrylate, Inorg. Mater., 42, 39-43 (2006) 余君臨,聚亞醯胺/黏土奈米複合材料之物理化性質與微結構分析,國立中山大學材料科學研究所碩士論文,2001 莊金木,聚亞醯胺/二氧化鈦複合材料之製備與性質研究,中原大學化學系碩士論文,2005 陳宗勤’利用超臨界二氧化碳進行聚碸薄膜表面接枝之研究國立台灣大學化學工程學研究所碩士論文’(2007) 王惠君,以回應曲面法探討溶膠-凝膠法製備奈米二氧化矽之參數影響,中原大學化學工程學系碩士論文,(2004) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40401 | - |
| dc.description.abstract | Poly(4,4’-Oxydiphenylene Pyromellitimide)是最典型的聚亞醯胺,目前被廣泛用於航空、汽車以及電子等工業,在電子的層間塗膜及介電絕緣層的應用上,為滿足原件尺寸越來越小的趨勢,Poly(4,4’-Oxydiphenylene Pyromellitimide)被要求要具有更低的熱膨脹係數(Thermal expansion coefficient, CTE)、吸濕性以及介電係數,Poly(3,4’-Oxydiphenylene Pyromellitimide)是Poly(4,4’-Oxydiphenylene Pyromellitimide)的同分異構物,擁有更低的熱膨脹係數,及其他優異的性質,但是,仍需盡可能符合工業上,低吸濕性及低介電係數的趨勢。二氧化矽的加入已被證明可以降低材料的吸濕性及介電係數,但是無論如何,都要先克服二氧化矽在有機基材內的聚集問題。
本研究利用超臨界二氧化碳技術進行奈米級二氧化矽的表面接枝,將3- Glycidoxypropyltrimethoxysilane(Glymo)接枝在二氧化矽表面,以增加二氧化矽與聚亞醯胺Poly(3,4’-Oxydiphenylene Pyromellitimide)介面間的相容性以及分散性,以供給將來製備Poly(3,4’-Oxydiphenylene Pyromellitimide)複合材料的指標。 技術方面可以藉著超臨界二氧化碳技術避免掉化學溶劑的使用以及透過調整反應時間、溫度、壓力即可控制接枝量,並取得最佳參數條件,接枝結束後的樣品進行FTIR及TGA的鑑定,最後透過UV-vis及SEM偵測二氧化矽的分散性。結果顯示在溫度為1000C,壓力在30MPa,反應時間8小時的操作條件下,可以得到最大接枝量4.66 wt.%,並且透過UV-vis證明Glymo可以增加介面的相容性,使得二氧化矽在聚亞醯鞍的前趨物(Poly(amic acid), PAA)中的分散性被改善,最後利用SEM觀察改質後二氧化矽在聚亞醯鞍中分散情形,分散粒徑從改質前的50 μm降低到小於5μm。 | zh_TW |
| dc.description.abstract | In this study, SiO2 nanoparticles were successfully modified with 3- Glycidoxypropyltrimethoxysilane using supercritical carbon dioxide (SCCO2) as a solvent. By this way, we can change temperature、presure and reaction time to control degree of grafting without organic solvent. When temperature is 1000C, operating pressure is 30MPa and reaction time is 8 h, grafting percentage have maximax: 4.66 wt.%. Modified SiO2 were characterized by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric (TGA). Further, SiO2/Poly(amic acid) mixture and SiO2/Poly(3,4’-Oxydiphenylene Pyromellitimide) composites were prepared. They were characterized by UV-vis and SEM. Modified SiO2 in organic substance observed good dispersibility compare to bare of that.
Poly(3,4’-Oxydiphenylene Pyromellitimide) differs from the more common PMDA-4,4’-ODA only in the isomerization of the diamine unit. It was synthesized sunce 1991, there’s not nanocomposites about Poly(3,4’-Oxydiphenylene Pyromellitimide). Our study be a reference for PMDA-3,4’-ODA nanocomposites in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:46:41Z (GMT). No. of bitstreams: 1 ntu-97-R95524078-1.pdf: 1101502 bytes, checksum: 93c2fbd200f24b0319669928e981b1bd (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 奈米有機/無機複合材料 1 1-1.1 奈米有機/無機複合材料簡介 1 1-1.2 奈米有機/無機複合材料簡介 2 1-2 表面改質的應用與方法 3 1-2.1 表面改質的應用 3 1-2.2 表面改質的方法 4 1-2.3 無機物的改質特性 6 1-3 超臨界流體 7 1-3.1 超臨界二氧化碳的應用 7 1-3.2 超臨界二氧化碳表面接枝 (Supercritical carbon dioxide grafting) 8 1-4 聚亞醯胺(Polyimide, PI)的簡介 9 1-4.1 聚亞醯胺的分類 9 1-4.2 聚亞醯胺的應用 11 1-4.3 Poly(3,4’-Oxydiphenylene Pyromellitimide)的簡介 12 1-5 研究目的 13 第二章 實驗方法與步驟 14 2-1 實驗藥品與分析儀器 14 2-1.1 實驗藥品 14 2-1.2 實驗儀器 15 2-1.3 實驗分析儀器 16 2-2 實驗裝置 17 2-3 實驗步驟 18 2-3.1 超臨界二氧化碳接枝實驗 18 2-3.2 聚亞醯胺酸(Poly(amic acid))的製備 19 2-3.3 二氧化矽/聚亞醯胺的製備 19 2-3.4 改質前後二氧化矽之沉降實驗 20 第三章 結果與討論 21 3-1 二氧化矽的選用結果與討論 21 3-1.1 紅外線光譜儀分析(FTIR) 21 3-1.2 熱種分析儀分析(Thermogravimetric, TGA) 21 3-2 利用超臨界二氧化碳進行二氧化矽表面接枝之特性分析與結果討論 23 3-2.1 紅外線光譜儀分析(FTIR) 23 3-2.2 熱種分析儀分析(Thermogravimetric, TGA) 24 3-3 利用超臨界二氧化碳進行二氧化矽表面接枝之結果與討論 24 3-3.1 反應時間效應 24 3-3.2 反應溫度效應 25 3-3.3 操作壓力效應 25 3-3.4 表面接枝對分散性之效應 26 3-3.5 二氧化矽/聚亞醯胺複合材料之表面型態SEM分析 28 第四章 結論 29 參考文獻 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聚亞醯胺 | zh_TW |
| dc.subject | 奈米複合材料 | zh_TW |
| dc.subject | 超臨界二氧化碳 | zh_TW |
| dc.subject | 丙基三甲氧矽烷 | zh_TW |
| dc.subject | 熱膨脹係數 | zh_TW |
| dc.subject | polyimide | en |
| dc.subject | nanocomposites | en |
| dc.subject | Thermal expansion coefficient | en |
| dc.subject | supercritical carbon dioxide | en |
| dc.subject | 3-Glycidoxypropyltrimethoxysilane | en |
| dc.title | 利用超臨界二氧化碳進行奈米二氧化矽表面接枝之研究 | zh_TW |
| dc.title | Surface Grafting of Silica Nanoparticle Using Supercritical Carbon Dioxide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳立仁,林祥泰 | |
| dc.subject.keyword | 超臨界二氧化碳,奈米複合材料,丙基三甲氧矽烷,聚亞醯胺,熱膨脹係數, | zh_TW |
| dc.subject.keyword | 3-Glycidoxypropyltrimethoxysilane,nanocomposites,supercritical carbon dioxide,polyimide,Thermal expansion coefficient, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
