請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40393
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李清勝(Cheng-Shang Lee) | |
dc.contributor.author | Wei-Ting Fang | en |
dc.contributor.author | 方偉庭 | zh_TW |
dc.date.accessioned | 2021-06-14T16:46:29Z | - |
dc.date.available | 2008-08-06 | |
dc.date.copyright | 2008-08-06 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-31 | |
dc.identifier.citation | Boukabara, S.-A., R. N. Hoffman, C. Grassotti, and S. M. Leidner, 2002: Physically-based modeling of QSCAT SeaWinds passive microwave measurements for rain detection. J. Geophys. Res., 107, 4786, doi:10.1029/2001JD001243.
Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 1397–1413. Brand, S., 1972: Very large and very small typhoons of the western North Pacific Ocean. J. Meteor. Soc. Japan, 50, 332-341. Carr, L. E., III, and R. L. Elsberry, 1997: Models of tropical cyclone wind distribution and beta-effect propagation for application to tropical cyclone track forecasting. Mon. Wea. Rev., 125, 3190-3209. Chan, J. G., and R. H. F. Kwok, 1999: Tropical cyclone genesis in a global numerical weather prediction model. Mon. Wea. Rev., 127, 611-624. Cocks, S. B., and W. M. Gray, 2002: Variability of the Outer Wind Profiles of Western North Pacific Typhoons: Classifications and Techniques for Analysis and Forecasting. Mon. Wea. Rev., 130, 1989-2005. Dunn, G. E., and B. I. Miller, 1960: Atlantic Hurricanes. Louisiana State University Press, 326 pp. Ebuchi, N., H. C. Graber, and M. J. Caruso, 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19, 2049–2062. Emanuel K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155. Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975-990. Frank, W. M. and W. M. Gray, 1980: Radius and frequency of 15 m s-1 (30 kt) winds around tropical cyclones. J. Appl. Meteor., 19, 219–223. Hoffman, R. N., S. M. Leidner, J. M. Henderson, R. Atlas, J. V. Ardizzone, and S. C. Bloom, 2003: A two-dimensional variational analysis method for NSCAT ambiguity removal: Methodology, sensitivity, and tuning. J. Atmos. Oceanic Technol., 20, 585– 605. Hoffman, R. N., and S. M. Leidner, 2005: An introduction to the near-real-time QuikSCAT data. Wea. Forecasting, 20, 476– 493. Holland, G J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723-725. Holland, G. J., 1997: Maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541. Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model, Mon. Wea. Rev., 126, 2621-2639. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/ detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritcsh scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170. Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part 1: Size parameters. J. Climate, 17, 3555-3575. Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89–101. Lee, C. S., K. K. W. Cheung, J. S. N. Hui, and R. L. Elsberry, 2008: Mesoscale Features Associated with Tropical Cyclone Formations in the Western North Pacific. Mon. Wea. Rev., (in press) Liu, K. S., and J. C. L. Chan, 1999: Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127, 2992–3001. Liu, K. S., and J. C. L. Chan, 2002: Synoptic Flow Patterns Associated with Small and Large Tropical Cyclones over the Western North Pacific. Mon. Wea. Rev., 130, 2134-2142. Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea Rev., 112, 1408–1418. Mueller, K. J., M. DeMaria, J. A. Knaff, J. P. Kossin, and T. H. Vonder Haar, 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 907–922. Pickett, M. H., W. Tang, L. K. Rosenfeld, and C. H. Wash, 2003: QuikSCAT satellite comparison with nearshore buoy wind data off the U.S. west coast. J. Atmos. Oceanic Technol., 20, 1869–1879. Polito, P. S., W. T. Liu, and W. Q. Tang, 2000: Correlation based interpolation of NSCAT wind data. J. Atmos. Oceanic. Technol., 17, 1128–1138. QuikSCAT Science Data Product User’s Manual. September 2006, JPL. Riehl, H., 1979: Climate and Weather in the Tropics. Academic Press, 611 pp. Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027–2043. Weatherford, C. L., and W. M. Gray, 1988a: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 1032–1043. Weatherford, C. L., and W. M. Gray, 1988b: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 1044–1056. Weissman, D. E., M. A. Bourassa, and J. Tongue, 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19, 738–746. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40393 | - |
dc.description.abstract | 颱風暴風半徑的大小,常為決定颱風警戒範圍的重要參考資訊;如何客觀估計颱風暴風影響範圍,並了解其變化的物理過程,是一個重要的研究課題。本研究利用QuikSCAT海面風場資料,估計2000 ~ 2005年間、145個西北太平洋颱風之15 m s-1暴風半徑(R15),分析其氣候特性和伴隨的綜觀環境場變化特徵;此外,並選取綜觀環境類似合成場之個案Aere(2004)(較大颱風)與Roke(2005)(較小颱風),利用WRF進行數值模擬,探討其角動量通量之變化。
分析颱風發展期間R15的變化結果顯示,強度達34 kt(TS)時,其R15較大(> 1.8° Lat.)的颱風,在強度增加至颱風強度(64 kt)時,其R15仍維持較大(> 2.6° Lat.)的比例達72%,較小(TS:< 1.1° Lat.、TY:< 1.8° Lat.)颱風亦達67%;即有大者恆大、小者恆小的趨勢。為探討此兩類型颱風在形成和發展期間,結構改變與綜觀環境間的關係,本研究針對強度達到34 kt前三天與強度從34 kt發展至64 kt這兩段時期,利用NCEP reanalysis2網格資料進行合成分析。結果顯示,在強度達34 kt前72小時內,較大颱風在系統南、北兩側,在850 hPa分別有大於10 ms-1之西南風與東風,且南側之西南風隨時間增強較顯著。較小颱風附近之綜觀風場則較弱,隨時間亦無明顯變化。在增強階段(34 kt發展至64 kt),500 hPa高度場顯示,較大颱風由位於副熱帶高壓之西南側,移至高壓之西側;較小颱風則持續位在副熱帶高壓南緣。 使用WRF模擬綜觀環境類似合成之個案結果顯示,模式可合理掌握颱風結構變化。分析模式中近地面10 m風剖面顯示,在形成和發展初期,較大颱風Aere(2004)之風速增強不僅於中心附近,風速大於10 m s-1之延伸範圍達半徑達8° Lat.以上,呈現具有較大暴風半徑颱風之特性。較小颱風Roke(2005)風速增加之形式則與Aere不同,僅侷限在距中心1.5° Lat.半徑內,風速大於10 m s-1之延伸範圍在半徑3° Lat.以內。角動量通量分析結果顯示,Aere於低層有大量的角動量輸入,且平均相對角動量與平均科氏力矩項均有顯著貢獻;在7° Lat.範圍外,又以後者較大;Roke則無顯著角動量通量之輸入。綜合分析結果顯示,在熱帶氣旋形成及發展至TS強度期間,系統南側若有顯著西南風,將有利於其發展為較大的熱帶氣旋。 | zh_TW |
dc.description.abstract | This study uses QuikSCAT satellite to estimate the radial extents of 15 m s-1 wind (R15) of the tropical cyclones (TCs) occurring over the western North Pacific from 2000 to 2005 (145 TCs). The results of analyzing of the development during the R15 changing from tropical storm (TS) to typhoon (TY) show that if the R15 of a TC is relatively large (> 1.8°) (, or small (< 1.1°)) when it develops to TS, there is a 70% (67%) of possibility for it to remain as a large TC (> 2.6°) (, or small (< 1.8°)) when it intensified to TY. In other words, a TC tends to retain its size during the development of the intensity from TS to TY.
The composite analyses show that there are strong southwesterly and easterly (> 10 m s-1) at 850 hPa to both the north and the south of the large cases within 72 h before their intensity to 34 kt, and especially the southwesterly increase about 5 m s-1 during the period. However, the synoptic flows of small cases are relatively weak, and remain almost the same during the whole process. Furthermore, when large cases move from the south to the west of subtropical high (STR), the small cases move with STR by lingering around its southern edge. Aere (2004) and Roke (2005) are selected cases respectively represent large and small cases considering their associated synoptic flows are similar to composite wind field. The 10 m radius section shows that the wind speed of Aere increases not only at the inner but also the outer core, and the area of wind speed above 10 m s-1 extends to 8° radius; nevertheless, the 10 m wind speed of Roke increases at inner core only. The angular momentum flux analysis also shows the angular momentum flux of Aere extends over 10°, which is much larger than that of Roke. Therefore, if there is a southwesterly surge located to south of a large TC during the formation stage, the TC tends to be with large size. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:46:29Z (GMT). No. of bitstreams: 1 ntu-97-R95229009-1.pdf: 6749245 bytes, checksum: e54ae189be079054f6c3be66cfd78363 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 一、前言 1
1.1 論文回顧 2 1.2 研究動機 5 二、颱風暴風半徑的計算與氣候特性 6 2.1 QuikSCAT資料簡介 6 2.2 台灣鄰近地區之QuikSCAT衛星資料與測站資料之比較 7 2.3 颱風暴風半徑之估算 10 2.4 QuikSCAT暴風半徑與作業單位暴風半徑之比較 12 2.5 暴風半徑之氣候特性 14 三、大、小於颱風形成與發展階段所伴隨綜觀環境特徵 16 3.1 大、小颱風形成時伴隨之綜觀環境 16 3.2 大、小颱風發展時伴隨之綜觀環境 19 3.3 大、小颱風之紅外線衛星雲圖特徵 20 3.4 特殊個案之綜觀環境特徵 22 四、大、小颱風形成過程之數值模擬與分析 24 4.1 大颱風個案於形成過程之模擬(Aere, 2004) 24 4.1.1 個案簡介 24 4.1.2 模式設定與結果校驗 25 4.2 小颱風個案於形成過程之模擬(Roke, 2005) 27 4.2.1 個案簡介 27 4.2.2 模式設定與結果校驗 28 4.3 角動量通量分析 30 五、討論與總結 34 參考文獻 38 | |
dc.language.iso | zh-TW | |
dc.title | 西北太平洋颱風暴風半徑之分析 | zh_TW |
dc.title | A study of Typhoon Size in the Western North Pacific | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳泰然,郭鴻基,王作台,簡國基 | |
dc.subject.keyword | 颱風,颱風形成,颱風結構,暴風半徑,數值模擬, | zh_TW |
dc.subject.keyword | typhoon,formation,structure,size,simulation, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-07-31 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 6.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。