請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40382完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪宏基 | |
| dc.contributor.author | Kuan-Fu Lin | en |
| dc.contributor.author | 林冠甫 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:46:12Z | - |
| dc.date.available | 2009-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | [1] P. K. Banerjee and R. Butterfield, Boundary Element Methods in Engineering Science, McGraw-Hill, London, England, 1981.
[2] Heinrich G. W. Begehr, Complex Analytic Methods for Partial Differential Equations, World Scientific Publishing, Singapore, 1994. [3] Heinrich Begehr, Zhongxiang Zhang and Jinyuan Du, On Cauchy-Pompeiu formula for functions with values in a universal Clifford algebra, Acta Mathmatica Scientia,Vol.23, No.1, pp.95-103, 2003. [4] Heinrich Begehr, Boundary value problems in complex analysis I, Bolet′ın de la Asociaci′on Mathem′atica Venezolana, Vol.XII, No.1, pp.65-85, 2005. [5] Heinrich Begehr, Boundary value problems in complex analysis II, Bolet′ın de la Asociaci′on Mathem′atica Venezolana, Vol.XII, No.2, pp.217-250, 2005. [6] Marc Bonnet, Boundary Integral Equation Mathods for Solid and Fluids, Wiley, New York, USA, 1995. [7] Arthur P. Boresi and Ken P. Chong, Elasticity in Engineering Mechanics, Wiley, New York, USA, 2000. [8] George F. Carrier, Max Krook and Carl E. Pearson, Functions of a Complex Variable - Theory and Technique, SIAM, Philadelphia, USA, 2005. [9] J. T. Chen and Y. W. Chen, Dual boundary element analysis using complex variables for potential problems with or without a degenerate boundary, Engineering Analysis with Boundary Elements, Vol.24, pp.671-684, 2000. [10] J. T. Chen and H. K. Hong, Dual boundary integral equations at a corner using contour approach around singularity, Advances in Engineering Software, Vol.21,pp.169-178, 1994. [11] Joo Ho Choi and Byung Man Kawk, A boundary integral equation formulation in derivative unknowns for two-dimensional potential problems, Journal of Applied Mechanics, Vol.56, pp.617-623, 1989. [12] R. Delanghe, R. S. Kraußhar and H. R. Malonel, Differentiability of functions with values in some real associative algebras: approaches to an old problem, Bulletin de la Soci′et′e Royale des Sciences de Li`ege, Vol.70, No.4-5-6, pp.231-249, 2001. [13] John E. Gilbert and Margaret A. M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, Cambridge, England, 1991. [14] Massimo Guiggiani, Hypersingular boundary integral equations have an additional free term, Computational Mechanics, Vol.16, pp.245-248, 1995. [15] Stephen Gull, Anthony Lasenby and Chris Doran, Imaginary numbers are not real the geometric algebra of spacetime, Foundations of Physics, Vol.23, No.9, 1993. [16] Stephen Gull, Anthony Lasenby and Chris J. L. Doran, A unified mathematical language for physics and engineering in the 21st century, Philosophical Transactions:Mathematical, Physical and Engineering Sciences, Vol.358, No.1765, pp.21-39, 2000. [17] Klaus G‥urlebeck and Wolfgang Spr‥ossig, Quaternionic and Clifford Calculus for Physicists and Engineers, Wiley, Chichester, England, 1997. [18] David Hestenes and Garret Sobczyk, Clifford Algebra to Geometric Calculus, Reidel, Dordrecht, Holland, 1984. [19] David Hestenes, New Foundations for Classical Mechanics, Kluwer, Dordrecht, Holland, 1999. [20] David Hestenes, Oersted medal lecture 2002: reforming the mathematical language of physics, American Journal of Physics, Vol.71, No.2, pp.104-121, 2003. [21] Theodore V. Hromadka II and Chintu Lai, The Complex Variable Boundary Element Method in Engineering Analysis, Springer-Verlag, New York, USA, 1987. [22] Chung-Yuen Hui and Subrate Mukherjee, Evaluation of hypersingular integrals in the boundary element method by complex variable techniques, International Journal of Solids and Structures, Vol.34, No.2, pp.203-221, 1997. [23] R. Kolhe, W. Ye, C. Y. Hui and S. Mukherjee, Complex variable formulations for usual and hypersingular integral equations for potential problems-withapplications to corners and cracks. Computational Mechanics, Vol.17, pp.279-286, 1996. [24] Vladislav V. Kravchenko and Michael V. Shapiro, Integral Representations for Spatial Models of Mathematical Physics, Longman, Essex, England, 1996. [25] V. V. Kravchenko, E. Ram′ırez de Arellano and M. V. Shapiro, On integral representations and boundary properties of spinor fields, Mathematical Methods in the Applied Sciences, Vol.19, pp.977-989, 1996. [26] Prem K. Kytbe, An Introduction to Boundary Element Methods, CRC Press, Boca Raton, Florida, USA, 1995. [27] E. G. Ladopoulos, The general type of finite-part singular integrals and integral equations with logarithmic singularities used in fracture mechanics,Acta Mechanica, Vol.75, pp.275-285, 1988. [28] A. M. Linkov and S. G. Mogilevskaya, Complex hypersingular integrals and integral equation in plane elasticity, Acta Mechanica, Vol.105, pp.189-205, 1994. [29] Pertti Lounesto, Clifford Algebras and Spinors, Cambridge University Press, Cambridge, England, 2001. [30] Alan Macdonald, A survey of geometric algebra and geometric calculus, http://faculty.luther.edu/ macdonal. [31] Zeev Nahari, Introduction to Complex Analysis, Allyn and Bacon, Boston, USA, 1961. [32] Rolf Nevanlinna and C. Paatero, Introduction to Complex Analysis, Addison-Wesley, Reading, Massachusetts, USA, 1969. [33] Par M. D. Pompeiu, Sur une classe de fonctions d’une variable complexe et sur certaines′equations int′egrales, Rendiconti del Circolo Matematico di Palermo, Vol.35, pp.277-281, 1913. [34] Todd C. Rasmussen and Guoqing Yu, Determination of groundwater flownets, fluxes, velocities, and travel times using the complex variable boundary element method, Engineering Analysis with Boundary Elements, Vol.30, pp.1030-1044, 2006. [35] John Ryan and Wolfgang Spr‥oßig, Clifford Algebras and their Applications in Mathematical phusics, Birkh‥auser, Boston, USA, 2000. [36] Martin H. Sadd, Elasticity, Elsevier, New York, USA, 2005. [37] Irving H. Shames and Francis A. Cozzarelli, Elastic and Inelastic Stress Analysis, Taylor & Francis, Washington, DC, USA, 1997. [38] Terje G. Vold, An introduction to geometric calculus and its application in rigid body mechanics, American Association of Physics Teachers, Vol.61, No.6, pp.491-504, 1993. [39] Terje G. Vold, An introduction to geometric calculus and its application to electrodynamics, American Association of Physics Teachers, Vol.61, No.6, pp.505-513,1993. [40] R. J. Whitley and T. V. Hromadka II, Theoretical developments in the complex variable boundary element method, Engineering Analysis with Boundary Elements,Vol.30, pp.1020-1024, 2006. [41] 武際可, 王敏中, 王煒, 彈性力學引論, 北京大學, 北京, 2001. [42] 陳正宗, 洪宏基, 邊界元素法, 新世界, 台北, 1992. [43] 楊桂通, 彈性力學, 高等教育, 北京, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40382 | - |
| dc.description.abstract | 對於待求場量為調和函數 (即控制方程式為拉普拉斯方程式) 之平面問題, 若以複數形式來呈現, 則在進行解題及分析上極為有效, 因複變分析擁有強大的運算能力及豐富完整的函數論. 有鑑於此, 本論文擬在保有這些特性的情況下, 將之由二維推廣至高維的邊界積分方程式來處理調和函數問題. 考慮到實際問題的需要, 在此推導出的奇異與超奇異邊界積分方程式, 皆適用於任意形狀的邊界問題, 即便是包含角點的邊界. 我們亦證實了實變數、複變數、四元數與克氏值的邊界積分方程式之間存在著關連性, 同時三套克氏值的邊界積分方程式亦可彼此轉換. | zh_TW |
| dc.description.abstract | It is well known that plane problems of harmonic functions are analyzed and solved effectively when expressed in the form of complex variables. This effectiveness is generally attributed to the powerful techniques of complex analysis and the richness of complex function theory. In view of this, the present thesis is aimed to extend the techniques to n-dimensional problems of boundary integral equations (BIEs) for harmonic field variables. Regarding usefulness for practical purposes, we derive singular and hypersingular BIEs not only for points on smooth boundaries but also for corner boundary points. The relations of real, complex, quaternion, and Clifford valued BIEs are explored. In Clifford valued BIEs, the three types of functions of are treated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:46:12Z (GMT). No. of bitstreams: 1 ntu-97-R95521230-1.pdf: 1629997 bytes, checksum: f07193c7e99f5e252731ce429c97ec2d (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Acknowledgements i
Abstract(Chinese) ii Abstract(English) iii Contents iv List of figures vi 1 Introduction 1 1.1 Motivation 1 1.2 Literature reviews 1 1.3 Framework 3 2 Boundary integral equations in R 5 2.1 Singular BIE 5 2.2 Hypersingular BIE 9 2.3 Summary 12 3 Boundary integral equations in C 13 3.1 Complex differential operators 13 3.2 Singular BIE from Borel-Pompeiu formula 14 3.3 Hypersingular BIE from Borel-Pompeiu formula 17 3.4 Real variable BIEs from complex variable BIEs 20 3.4.1 Singular BIE 20 3.4.2 Hypersingular BIE 21 3.5 Summary 23 4 Quaternionic algebra H and quaternionic analysis 24 4.1 Real quaternion 24 4.2 Complex quaternion 25 4.3 Pure quaternion 25 4.4 Reduced quaternion 26 4.5 Summary 27 5 Boundary integral equation in C`0,n 28 5.1 Clifford algebra and Clifford analysis in C`0,n 28 5.2 Singular BIE 30 5.3 Relations of BIEs 32 5.3.1 C`0,1 32 5.3.2 C`0,2 33 5.3.3 C`0,3 34 5.4 Summary 34 6 Boundary integral equation in C`n 35 6.1 Clifford algebra and Clifford analysis in C`n 35 6.2 Singular BIE 36 6.3 Relations of BIEs 39 6.3.1 C`1 39 6.3.2 C`2 39 6.3.3 C`3 40 6.4 C`0,n, C`n and C`0,n−1 41 6.5 Summary 42 7 Application 43 7.1 Physical problem 43 8 Conclusion and future work 45 8.1 Conclusion 45 8.2 Future work 46 References 47 | |
| dc.language.iso | en | |
| dc.subject | 超奇異邊界積分方程式 | zh_TW |
| dc.subject | 奇異邊界積分方程式 | zh_TW |
| dc.subject | 拉普拉斯方程式 | zh_TW |
| dc.subject | 狄氏方程式 | zh_TW |
| dc.subject | 複變分析 | zh_TW |
| dc.subject | 克氏分析 | zh_TW |
| dc.subject | Laplace equation | en |
| dc.subject | Dirac equation | en |
| dc.subject | complex analysis | en |
| dc.subject | singular boundary integral equation | en |
| dc.subject | hypersingular boundary integral equation | en |
| dc.subject | Clifford analysis | en |
| dc.title | 克氏分析之邊界積分方程式 | zh_TW |
| dc.title | Boundary Integral Equations in Clifford Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊德良,黃燦輝,陳正宗 | |
| dc.subject.keyword | 奇異邊界積分方程式,超奇異邊界積分方程式,拉普拉斯方程式,狄氏方程式,複變分析,克氏分析, | zh_TW |
| dc.subject.keyword | singular boundary integral equation,hypersingular boundary integral equation,Laplace equation,Dirac equation,complex analysis,Clifford analysis, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
