請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40380完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李士傑(Shyh-Jye Lee) | |
| dc.contributor.author | Shih-Lei Lai | en |
| dc.contributor.author | 賴時磊 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:46:09Z | - |
| dc.date.available | 2009-08-06 | |
| dc.date.copyright | 2008-08-06 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | Afshar K, Stuart B, Wasserman SA (2000) Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development 127: 1887-1897.
Aktories K, Hall A (1989) Botulinum ADP-ribosyltransferase C3: a new tool to study low molecular weight GTP-binding proteins. Trends Pharmacol Sci 10: 415-418. Alberts AS, Bouquin N, Johnston LH, Treisman R (1998) Analysis of RhoA-binding Proteins Reveals an Interaction Domain Conserved in Heterotrimeric G Protein beta Subunits and the Yeast Response Regulator Protein Skn7. J Biol Chem 273: 8616-8622. Alberts AS (2001) Identification of a Carboxyl-terminal Diaphanous-related Formin Homology Protein Autoregulatory Domain. J Biol Chem 276: 2824-2830. Alberts AS (2002) Diaphanous-related Formin homology proteins. Curr Biol 12: R796. Amano M, Fukata Y, Kaibuchi K (2000) Regulation and functions of Rho-associated kinase. Exp Cell Res 261: 44-51. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, et al. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271: 20246-20249. Aspenstrom P, Richnau N, Johansson AS (2006) The diaphanous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics. Exp Cell Res 312: 2180-2194. Bakkers J, Kramer C, Pothof J, Quaedvlieg NE, Spaink HP, Hammerschmidt M (2004) Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development 131: 525-537. Bione S, Sala C, Manzini C, Arrigo G, Zuffardi O, et al. (1998) A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet 62: 533-541. Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, et al. (2006) Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 11: 613-627. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116: 167-179. Cheng JC, Miller AL, Webb SE (2004) Organization and function of microfilaments during late epiboly in zebrafish embryos. Dev Dyn 231: 313-323. Chihara K, Amano M, Nakamura N, Yano T, Shibata M, et al. (1997) Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem 272: 25121-25127. Crawford JM, Harden N, Leung T, Lim L, Kiehart DP (1998) Cellularization in Drosophila melanogaster is disrupted by the inhibition of rho activity and the activation of Cdc42 function. Dev Biol 204: 151-164. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351: 95-105. Drechsel DN, Hyman AA, Hall A, Glotzer M (1997) A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr Biol 7: 12-23. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420: 629-635. Evangelista M, Zigmond S, Boone C (2003) Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116: 2603-2611. Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181: 879-884. Fink RD, Trinkaus JP (1988) Fundulus deep cells: directional migration in response to epithelial wounding. Dev Biol 129: 179-190. Glotzer M (2001) Animal cell cytokinesis. Annu Rev Cell Dev Biol 17: 351-386. Glotzer M (2003) Cytokinesis: progress on all fronts. Curr Opin Cell Biol 15: 684-690. Goldschmidt-Clermont PJ, Furman MI, Wachsstock D, Safer D, Nachmias VT, et al. (1992 ) The control of actin nucleotide exchange by thymosin beta 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 3: 1015-1024. Goto H, Kosako H, Inagaki M (2000) Regulation of intermediate filament organization during cytokinesis: possible roles of Rho-associated kinase. Microsc Res Tech 49: 173-182. Guertin DA, Trautmann S, McCollum D (2002) Cytokinesis in eukaryotes. Microbiol Mol Biol Rev 66: 155-178. Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107: 843-854. Hagmann J, Burger MM, Dagan D (1999) Regulation of plasma membrane blebbing by the cytoskeleton. J Cell Biochem 73: 488-499. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509-514. Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355: 965-970. Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, et al. (2000) Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405: 76-81. Ho RK, Kane DA (1990) Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 348: 728-730. Hogan JC, Jr., Trinkaus JP (1977) Intercellular junctions, intramembranous particles and cytoskeletal elements of deep cells of the Fundulus gastrula. J Embryol Exp Morphol 40: 125-141. Homem CCF, Peifer M (2008) Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 135: 1005-1018. Ishizaki T, Morishima Y, Okamoto M, Furuyashiki T, Kato T, Narumiya S (2001) Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat Cell Biol 3: 8-14. Jantsch-Plunger V, Gonczy P, Romano A, Schnabel H, Hamill D, Schnabel R, Hyman AA, Glotzer M (2000) CYK-4: A Rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Biol 149: 1391-1404. Jesuthasan S (1998) Furrow-associated microtubule arrays are required for the cohesion of zebrafish blastomeres following cytokinesis. J Cell Sci 111 (Pt 24): 3695-3703. Jopling C, den HJ (2005) Fyn/Yes and non-canonical Wnt signalling converge on RhoA in vertebrate gastrulation cell movements. EMBO Rep 6: 426-431. Kaibuchi K, Kuroda S, and Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68: 459-486. Kane DA, Hammerschmidt M, Mullins MC, Maischein HM, Brand M, et al. (1996) The zebrafish epiboly mutants. Development 123: 47-55. Kane DA, McFarland KN, Warga RM (2005) Mutations in half baked/E-cadherin block cell behaviors that are necessary for teleost epiboly. Development 132: 1105-1116. Karakesisoglou I, Schleicher M, Gibbon BC, Staiger CJ (1996) Plant profilins rescue the aberrant phenotype of profilin-deficient Dictyostelium cells. Cell Motil Cytoskeleton 34: 36-47. Kato T, Watanabe N, Morishima Y, Fujita A, Ishizaki T, et al. (2001) Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells. J Cell Sci 114: 775-784. Keller R, Davidson L, Edlund A, Elul T, Ezin M, Shook D, Skoglund P (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 355: 897-922. Kilian B, Mansukoski H, Barbosa FC, Ulrich F, Tada M, et al. (2003) The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech Dev 120: 467-476. Kim AS, Kakalis LT, bdul-Manan N, Liu GA, Rosen MK (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404: 151-158. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of Embryonic-Development of the Zebrafish. Dev. Dynamics 203: 253-310. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng JH, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-Associated kinase (Rho-kinase). Science 273: 245-248. Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y (1993) Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol 120: 1187-1195. Kitzing TM, Sahadevan AS, Brandt DT, Knieling H, Hannemann S, et al. (2007) Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev 21: 1478-1483. Koppen M, Fernandez BG, Carvalho L, Jacinto A, Heisenberg CP (2006) Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development 133: 2671-2681. Kosako H, Goto H, Yanagida M, Matsuzawa K, Fujita M, et al. (1999) Specific accumulation of Rho-associated kinase at the cleavage furrow during cytokinesis: cleavage furrow-specific phosphorylation of intermediate filaments. Oncogene 18: 2783-2788. Kosako H, Yoshida T, Matsumura F, Ishizaki T, Narumiya S, and Inagaki M (2000) Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 19: 6059-6064. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150-163. Lai SL, Chang CN, Wang PJ, Lee SJ (2005) Rho mediates cytokinesis and epiboly via ROCK in zebrafish. Mol Reprod Dev 71: 186-196. Lammers M, Rose R, Scrima A, Wittinghofer A (2005) The regulation of mDia1 by autoinhibition and its release by Rho*GTP. EMBO J 24: 4176-4187. Lee SJ, Stapleton G, Greene JH, Hille MB (2000) Protein kinase C-related kinase 2 phosphorylates the protein synthesis initiation factor eIF4E in starfish oocytes. Dev Biol 228: 166-180. Li F, Higgs HN (2003) The Mouse Formin mDia1 Is a Potent Actin Nucleation Factor Regulated by Autoinhibition. Curr Biol 13: 1335-1340. Lin F, Sepich DS, Chen S, Topczewski J, Yin C, et al. (2005) Essential roles of G{alpha}12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements. J Cell Biol 169: 777-787. Mabuchi I, Hamaguchi Y, Fujimoto H, Morii N, Mishima M, Narumiya S (1993) A rho-like protein is involved in the organization of the contractile ring in dividing sand dollar eggs. Zygote 1: 325-331. Madaule P, Eda M, Watanabe N, Fujisawa K, Matsuoka T, et al. (1998) Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394: 491-494. Manser E. 2002. Small GTPases take the stage. Dev.Cell 3: 323-328. Manzo, S, Martinez-Cadena G, Lopez-Godinez J, Pedraza-Reyes M, Garcia-Soto J (2003) A Rho GTPase controls the rate of protein synthesis in the sea urchin egg. Biochem and Biophy Res Commun 310: 685-690. Marlow F, Topczewski J, Sepich D, Solnica-Krezel L (2002) Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr Biol 12: 876-884. Martin P, Wood W (2002) Epithelial fusions in the embryo. Curr Opin Cell Biol 14: 569-574. Matsumura F, Totsukawa G, Yamakita Y, Yamashiro S (2001) Role of myosin light chain phosphorylation in the regulation of cytokinesis. Cell Struct Funct 26: 639-644. Mazumdar A, Mazumdar M (2002) How one becomes many: blastoderm cellularization in Drosophila melanogaster. Bioessays 24: 1012-1022. McFarland KN, Warga RM, Kane DA (2005) Genetic locus half baked is necessary for morphogenesis of the ectoderm. Dev Dyn. 233: 390-406. Mockrin SC, Korn ED (1980) Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5'-triphosphate. Biochemistry 19: 5359-5362. Montero JA, Heisenberg CP (2003) Adhesive Crosstalk in Gastrulation. Developmental Cell 5: 190-191. Montero JA, Kilian B, Chan J, Bayliss PE, Heisenberg CP (2003) Phosphoinositide 3-kinase is required for process outgrowth and cell polarization of gastrulating mesendodermal cells. Curr Biol 13: 1279-1289. Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S (1993) Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119: 97-111. Narumiya S, Ishizaki T, Watanabe N (1997) Rho effectors and reorganization of actin cytoskeleton. FEBS Lett 410: 68-72. Narumiya S, Ishizaki T, Uehata M (2000) Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 325: 273-284. Nasevicius A, Ekker SC (2000) Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26: 216-220. Niggli V (1999) Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. FEBS Lett 445: 69-72. Nodelman IM, Bowman GD, Lindberg U, Schutt CE (1999) X-ray structure determination of human profilin II: A comparative structural analysis of human profilins. J Mol Biol 294: 1271-1285. Okada A, Lansford R, Weimann JM, Fraser SE, McConnell SK (1999) Imaging Cells in the Developing Nervous System with Retrovirus Expressing Modified Green Fluorescent Protein. Exp Neurol 156: 394-406. Otomo T, Otomo C, Tomchick DR, Machius M, Rosen MK (2005) Structural Basis of Rho GTPase-Mediated Activation of the Formin mDia1. Mol Cell 18: 273-281. Petersen J, Nielsen O, Egel R, Hagan IM (1998) FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J Cell Biol 141: 1217-1228. Pring M, Evangelista M, Boone C, Yang C, Zigmond SH (2003) Mechanism of formin-induced nucleation of actin filaments. Biochemistry 42: 486-496. Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, et al. (2002) Role of Formins in Actin Assembly: Nucleation and Barbed-End Association. Science 297: 612-615. Robinson DA, Spudich JA (2004) Mechanics and regulation of cytokinesis. Curr Opin in Cell Bio 16: 182-188. Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11: 471-477. Robinson DN, Spudich JA (2000) Towards a molecular understanding of cytokinesis. Trends Cell Biol 10: 228-237. Robinson,DN, Spudich,JA (2004) Mechanics and regulation of cytokinesis. Curr Opin Cell Biol 16: 182-188. Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, et al. (2005) Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435: 513-518. Sah VP, Seasholtz TM, Sagi SA, Brown JH (2000) The role of Rho in G protein-coupled receptor signal transduction: Ann Rev Pharmacol Toxicol 40: 459-489. Sato A, Khadka DK, Liu W, Bharti R, Runnels LW, et al. (2006) Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation. Development 133: 4219-4231. Schier AF (2001) Axis formation and patterning in zebrafish. Curr Opin Genet Dev 11: 393-404. Schirenbeck A, Bretschneider T, Arasada R, Schleicher M, Faix J (2005) The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 7: 619-625. Schluter K, Schleicher M, Jockusch BM (1998) Effects of single amino acid substitutions in the actin-binding site on the biological activity of bovine profilin I. J Cell Sci 111: 3261-3273. Schulte-Merker, S, Hammerschmidt M, Beuchle D, Cho KW, De Robertis EM, Nusslein-Volhard C (1994) Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120: 843-852. Self AJ, Hall A (1995) Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods in Enzymology 256 (pt B): 3-10. Severson AF, Baillie, DL, Bowerman B (2002) A Formin Homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Curr Biol 12: 2066-2075. Shimada A, Nyitrai M, Vetter IR, Kuhlmann D, Bugyi B, et al. (2004) The Core FH2 Domain of Diaphanous-Related Formins Is an Elongated Actin Binding Protein that Inhibits Polymerization. Mol Cell 13: 511-522. Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15: R213-R228. Solnica-Krezel L (2006) Gastrulation in zebrafish -- all just about adhesion? Curr Opin Genet Dev 16: 433-441. Stapleton,G, Nguyen,CP, Lease,KA, Hille,MB (1998) Phosphorylation of protein kinase C-related kinase PRK2 during meiotic maturation of starfish oocytes. Dev Biol 193: 36-46. Straight AF, Cheung A, Limouze J, Chen I, Westwood, NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299: 1743-1747. Strutt DI, Weber U, Mlodzik M (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387: 292-295. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81: 153-208. Thisse B, Pflumio S, Fthauer M, Loppin B, Heyer V, et al. (2001) Expression of the zebrafish genome during embryogenesis (NIH R01 RR15402). ZFIN Direct Data Submission (http://zfin.org). Thisse C, Thisse B, Schilling TF, Postlethwait JH (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. pp. 1203-1215. Thisse C, Thisse B, Halpern ME, Postlethwait JH (1994) Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas: Dev.Biol 164: 420-429. Tournaviti S, Hannemann S, Terjung S, Kitzing TM, Stegmayer C, et al. (2007) SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility. J Cell Sci 120: 3820-3829. Trinkaus JP (1973) Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev Biol 30: 69-103. Trinkaus JP (1980) Formation of protrusions of the cell surface during tissue cell movement. Prog Clin Biol Res 41: 887-906. Trinkaus JP (1992) The midblastula transition, the YSL transition and the onset of gastrulation in Fundulus. Dev Suppl: 75-80. Trinkaus JP, Trinkaus M, Fink RD (1992) On the convergent cell movements of gastrulation in Fundulus. J Exp Zool 261: 40-61. Trinkaus JP (1996) Ingression during Early Gastrulation of Fundulus. Dev Biol 177: 356-370. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, et al. (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389: 990-994. Ulrich F, Concha ML, Heid PJ, Voss E, Witzel S, et al. (2003) Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 130: 5375-5384. Ungar AR, Kelly GM, Moon RT (1995) Wnt4 affects morphogenesis when misexpressed in the zebrafish embryo. Mech Dev 52: 153-164. Verheyen EM, Cooley L (1994) Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development 120: 717-728. Verkhovsky AB, Chaga OY, Schaub S, Svitkina TM, Meister JJ, et al. (2003) Orientational order of the lamellipodial actin network as demonstrated in living motile cells. Mol Biol Cell 14: 4667-4675. Vincent S, Settleman J (1997) The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol 17: 2247-2256. von der HS, Bakkers J, Inbal A, Carvalho L, Solnica-Krezel L, et al. (2007) The Bmp gradient of the zebrafish gastrula guides migrating lateral cells by regulating cell-cell adhesion. Curr Biol 17: 475-487. Wallar BJ, Alberts AS (2003) The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol 13: 435-446. Wallingford JB, Fraser SE, Harland RM (2002) Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev.Cell 2: 695-706. Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, et al. (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16: 3044-3056. Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1: 136-143. Westerfield M (2000) The Zebrafish Book, University of Origon Press, Eugene, OR. Williams-Masson EM, Malik AN, Hardin J (1997) An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development 124: 2889-2901. Winter CG, Wang B, Ballew, A, Royou A, Karess R, et al. (2001) Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105: 81-91. Witke W, Podtelejnikov AV, Di NA, Sutherland JD, Gurniak CB, et al. (1998) In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J 17: 967-976. Witke W, Sutherland JD, Sharpe A, Arai M, Kwiatkowski DJ (2001) Profilin I is essential for cell survival and cell division in early mouse development. Proc Natl Acad Sci USA 98: 3832-3836. Witke W (2004) The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 14: 461-469. Wunnenberg-Stapleton K, Blitz IL, Hashimoto C, Cho KW (1999) Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development. Development 126: 5339-5351. Yasui Y, Amano M, Nagata K, Inagaki N, Nakamura H, et al. (1998) Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol 143: 1249-1258. Yang C, Huang M, DeBiasio J, Pring M, Joyce M, et al. (2000) Profilin enhances Cdc42-induced nucleation of actin polymerization. J Cell Biol 150: 1001-1012. Zhu S, Liu L, Korzh V, Gong Z, Low BC (2006) RhoA acts downstream of Wnt5 and Wnt11 to regulate convergence and extension movements by involving effectors Rho Kinase and Diaphanous: Use of zebrafish as an in vivo model for GTPase signaling. Cell Signal 18: 359-372. Zigmond SH, Evangelista M, Boone C, Yang C, Dar AC, et al. (2003) Formin leaky cap allows elongation in the presence of tight capping proteins. Curr Biol 13: 1820-1823. Zigmond SH (2004) Formin-induced nucleation of actin filaments. Curr Opin Cell Biol 16: 99-105. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40380 | - |
| dc.description.abstract | 細胞分裂 (cleavage)與腔腸化 (gastrulation)發生於動物胚早胚發育過程中,此等過程由非常動態的細胞骨架尤其是細肌絲細胞骨架 (actin cytoskeleton)重組及大量細胞遷移來完成。 根據前人的研究,控制細肌絲細胞骨架重組的主要分子是Rho與其下游調控蛋白,例如Rho-kinase (ROCK)和Diaphanous-related formin。 這些蛋白在細胞中能夠調控細肌絲細胞骨架,產生支撐細胞突起的構造或是具有收縮力的收縮絲 (stress fiber),而這些構造對細胞質分裂(cytokinesis)、細胞突起 (protrusion)與細胞遷移 (migration)都扮演著相當重要的角色,在此我們以斑馬魚為模式試著探討Rho與其下游調控蛋白在早胚發育過程中如何調控細胞分裂與腔腸化。
我們首先利用Rho的抑制劑Clostridium botulinum C3-exoenzyme (C3)注射到一細胞期的斑馬魚胚中,發現到C3會阻礙魚胚發育早期的細胞質分裂過程,而C3的抑制性可為同時注射自體活化RhoA所減弱,證明了此一結果的專一性。 在這些細胞質分裂受阻的魚胚中,我們發現原本應該分佈在分裂溝 (cleavage furrow)的細肌絲構造,因為Rho的抑制而消失。 當我們利用肌動蛋白 (myosin)的抑制劑blebbistatin來進行一樣的實驗時,我們也得到類似的結果。 這顯示Rho藉由調控肌凝蛋白 (actin)與肌動蛋白 (myosin)在分裂溝的分佈來控制細胞質分裂。 除此之外,我們也發現一部分C3注射過的卵出現外包作用 (epiboly)受阻的現象,在這些卵上利用原位雜合技術 (in situ hybridization)標定最前緣的囊胚細胞 (marginal blastoderm cells)與背唇細胞 (dorsal lip of blastopore)也顯示外包過程中這些細胞的遷移受到影響。我們同時發現ROCK抑制劑Y27632的注射對魚胚發育會造成類似上述的影響。這些結果顯示Rho-ROCK調控路徑至少控制了正常的細胞質分裂與外包作用的細胞遷移過程。 針對Rho的另一個下游調控蛋白Diaphanous,我們利用morpholino oligonucleotides (MO)抑制其蛋白質的正確表現,並發現這影響到魚胚的外包作用與胚體趨中及擴展作用 (convergent extension)。 經由對邊緣囊胚層(marginal blastoderm)、前脊索版細胞 (prechordal plate cells)和側邊下胚層 (lateral hypoblasts)等不同細胞群進行詳細的動態錄影分析,我們發現到這些細胞的細胞突起能力受到diaphanous MO影響而降低。 此外,一個在邊緣囊胚層前緣對外包作用很重要的環狀細肌絲構造也因為diaphanous MO的抑制而消失。 而且針對抑制肌凝蛋白調控因子profilin I設計的MO不但同樣會對魚胚發育產生類似的影響,而且與diaphanous MO一起注射時會產生協同作用 (synergistic effect)。 這些結果顯示Rho下游的Diaphanous和Profilin I對斑馬魚腔腸化過程中的細胞遷移是必需的。 經由這一連串的實驗,我們的結果勾勒出Rho在斑馬魚早期胚發育所扮演的角色。 Rho經由ROCK調控肌動與肌凝蛋白在分裂溝的分佈與產生的收縮力控制細胞質分裂。 同樣地,Rho經由Diaphanous與Profilin影響邊緣囊胚層前緣環狀細肌絲構造之組成,與腔腸化過程中的細胞突起及遷移,進而調控斑馬魚胚腔腸化過程中之外包及其他細胞運動。 | zh_TW |
| dc.description.abstract | Cytokinesis and gastrulation cell movements occur during early embryonic development which relies heavily on dynamic actin assembly. Rho and its associated proteins, including the Rho-associated kinase and Rho-activated formin, diaphanous, have been demonstrated to be key regulators of actomyosin contractility in cytokinesis and actin assembly in cellular protrusion and migration. However, roles of Rho and its associated proteins play in early development remains unclear.
To study the regulation of embryonic development by Rho, we microinjected Clostridium botulinum C3-exoenzyme (C3) into zebrafish embryos. We found that C3 inhibited cytokinesis during early cleavages. C3 inhibition appeared to be specific on RhoA, since the constitutively active RhoA could partially rescued the C3-induced defects. Distributions of actin and the cleavage furrow associated β-catenin were disrupted by C3. Belbbistatin, a myosin II inhibitor, also caused blastomeres disintegration. It suggested that Rho mediates cytokinesis via cleavage furrow protein assembly and actomyosin ring constriction. Furthermore, C3 blocked cellular movements during epiboly and gastrulation as evident by the impairment on no tail and goosecoid expression in marginal blastoderm cells and the dorsal lip of blastopore, respectively. Y-27632, an antagonist of Rho-associated kinase (ROK/ROCK), had the similar inhibitory effects on zebrafish development as the C3 treatments. These results suggest that Rho mediates cleavage furrow protein assembly during cytokinesis and cellular migration during epiboly and gastrulation via at lease a ROK/ROCK-dependent pathway. We also found that Knockdown of another Rho associated protein Diaphanous-related formin, Dia2, by antisense morpholino oligonucleotides (MOs) blocked epiboly formation and convergent extension in a dose-dependent manner. Time-lapse recording showed that cellular protrusions of marginal blastoderm cells, prechordal plate cells and lateral hypoblasts were inhibited in the zdia2 morphants. Furthermore, a ring-like actin structure normally forms during late epiboly was abolished in zdia2 morphants. Lastly, co-injection of antisense MOs of zdia2 and profilin I, but not profilin II, resulted in a synergistic inhibition of gastrulation. These results suggest that zDia2 and profilin I are required for cell movements during gastrulation in zebrafish. In conclusion, our findings draw the outline of Rho function in early developments. Rho regulates cytokinesis, probably through the assembly of furrow proteins and controlling actomyosin contractility via ROCK. Nevertheless, Rho also controls gastrulation cell migrations, including epiboly, convergence and extension, through regulating cell protrusions and actin condensation at front edge of migrating cells via zDia2 and profilin I. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:46:09Z (GMT). No. of bitstreams: 1 ntu-97-F90243012-1.pdf: 7416827 bytes, checksum: f55f8d158fcfe740164f64a1721afbe3 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS 致謝 2
ABSTRACT IN CHINESE 中文摘要 7 ABSTRACT 9 GENERAL INTRODUCTION 11 CHAPTER 1: RHO MEDIATES CYTOKINESIS AND EPIBOLY VIA ROCK IN ZEBRAFISH 15 ABSTRACT 15 INTRODUCTION 17 MATERIALS AND METHODS 20 Fish Husbandry and Embryo Collection 20 RT-PCR. Analysis 20 Preparation of Embryo Extract, Immunoprecipitation and Western Blotting 21 Microinjection Procedures 21 Actin and β-catenin Staining on Whole Mount Embryos 22 Removing Embryos from Their Chorions for Blebbistatin Treatments 23 In Situ Hybridization on Whole Mount Embryos 23 Embryo Observations and Photography 23 Statistical Analysis 24 RESULTS 25 Expression of rhoA during early embryonic development 25 Inhibiting Rho activity blocks cytokinesis 27 Inhibition of C3 can be partially rescued by constitutively active RhoA 28 Inhibiting Rho activity blocks actin and β-catenin distributions at the cleavage furrows 29 Deterioration of embryo by inhibiting Myosin II 29 Inhibiting Rho activity blocks epiboly and gastrulation 30 Inhibiting Rho-associated kinase activity blocks cytokinesis and epiboly 32 DISCUSSION 34 C3 inhibition on cytokinesis can be rescued by active Rho 35 Rho-mediated cytokinesis is regulated through a ROK/ROCK-dependent pathway 36 Regulation of gastrulation by small GTPases signaling 37 ACKNOWLEDGEMENTS 38 REFERENCES 39 FIGURES AND TABLE 47 Fig. 1. Sequence alignment of zebrafish and human RhoA gene. 47 Fig. 2. RhoA is present as maternal transcripts and proteins in zebrafish embryos. 48 Fig. 3. C3-exoenzyme causes gradual death of embryos. 49 Fig. 4. C3-exoenzyme blocks embryonic cleavage in a dose-dependant manner. 51 Fig. 5. C3 and Y-27632 disrupt distributions of actin and β-catenin at the cleavage furrows in injected embryos. 53 Fig. 6. Blebbistatin induces the loss of blastomeres and the disintegration of the embryos. 54 Fig. 7. C3-exoenzyme dose-dependently inhibits cellular migration during epiboly. 56 Fig. 8. C3 induces the shortening of embryonic axis. 57 Fig. 9. Y-27632 inhibits the embryonic cleavage and gastrulation in a dose-dependant manner. 59 Table 1. Rescue of C3-induced embryonic cleavage defects by constitutively active RhoA. 60 CHAPTER 2: DIAPHANOUS-RELATED FORMIN 2 AND PROFILIN I ARE REQUIRED FOR GASTRULATION CELL MOVEMENTS 61 ABSTRACT 61 INTRODUCTION 63 RESULTS 66 Cloning, sequencing, and expression profile analysis of zdia2 66 zDia2 specifically interacts with constitutively-active RhoA and Cdc42 but not Rac1 67 Knockdown of zdia2 inhibits epiboly and convergent extension 68 zDia2 regulates gastrulation cell movements via regulating cell protrusive activity 72 Knockdown of zdia2 blocks actin assembly in marginal deep cells and YSL 74 zdia2 function is required cell-autonomously for the gastrulation cell migration 75 zdia2 regulates gastrulation cell migration in coordination with profilin I but not profilin II 76 DISCUSSION 78 zDia2 is required for gastrulation cell movements in zebrafish 78 zDia2 regulates protrusive activity of marginal deep cells, prechordal plate progenitor cells and lateral mesendodermal cells and its role in gastrulation 79 Actin-dynamics in epibolic cell movement 81 Upstream regulators of zDia2 in gastrulation cell movements 83 zDia2 controls gastrulation cell movements in coordination with profilin I but not profilin II 84 MATERIALS AND METHODS 87 Maintenance of zebrafish 87 Cloning and analysis of zdia2 87 RT-PCR analysis 88 Whole-mount in situ hybridization (WISH) 88 Yeast two-hybrid assay 89 Morpholino oligonucleotides microinjections 90 Measurement and counting of embryos 91 Time-lapse epiboly cell migration recording 91 Filamentous actin staining on whole-mount embryos 92 Cell transplantation 93 Statistical analysis 93 ACKNOWLEDGMENTS 93 REFERENCES 95 FIGURES 105 Figure 1. Sequence analysis of the zebrafish diaphanous 2 gene (zdia2). 107 Figure 2. Ubiquitous expression of zdia2 during early embryonic development. 109 Figure 3. The zDia2 N-terminal half domain specifically interacted with constitutively active RhoA and Cdc42 in the yeast two-hybrid assay. 110 Figure 4. The zdia2 splice-blocking morpholino oligonucleotides (sMO) caused splicing aberrance of zdia2 exons 4 and 5. 111 Figure 5. Knockdown of zdia2 by MO interferes with gastrulation cell movements in a dose-dependent manner. 112 Figure 6. Knockdown of zdia2 inhibits epiboly cell migration by inhibiting cell protrusion formation. 114 Figure 7. Knockdown of zdia2 inhibits cell protrusion formation of prechordal plate (primordial) cells and lateral (mesendodermal) cells. 116 Figure 8. Knockdown of zdia2 inhibit actin condensation at the front edge of blastoderm. 117 Figure 9. zdia2 function is required cell-autonomously for the cell protrusions and migration. 118 Figure 10. zDia2 coordinates with profilin I in the regulation of gastrulation cell movements. 119 Figure 11. Rho mediates actin remodeling during gastrulation in zebrafish. 120 Figure 1S. Sequence alignment of the spicing variants induced by the zdia2 sMO. 121 Figure 2S. Knockdown of zdia2 by MO interferes with convergent extension cell movements. 122 Figure 3S. Knockdown of zdia2 interferes with protrusion formation at marginal deep cells during epiboly cell movement. 123 Figure 4S. Knockdown of zdia2 inhibit actin condensation at the YSL. 124 Figure 5S. Synergistic effect of zdia2 sMO and profilin I tMO. 125 GENERAL CONCLUSIONS AND DISCUSSION 126 GENERAL REFERENCES 133 | |
| dc.language.iso | en | |
| dc.subject | Profilin | zh_TW |
| dc.subject | 外包作用 | zh_TW |
| dc.subject | 胚體趨中及擴展作用 | zh_TW |
| dc.subject | Rho | zh_TW |
| dc.subject | ROCK | zh_TW |
| dc.subject | Diaphanous | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | Diaphanous | en |
| dc.subject | Profilin | en |
| dc.subject | epiboly | en |
| dc.subject | zebrafish | en |
| dc.subject | convergent extension | en |
| dc.subject | ROCK | en |
| dc.subject | Rho | en |
| dc.title | Rho及其相關分子在斑馬魚胚分裂及腔腸化細胞遷徙過程中所扮演角色之探討 | zh_TW |
| dc.title | The roles of Rho and its associated proteins in cytokinesis and gastrulation cell migration in zebrafish, Danio rerio. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 羅秀婉(Show-Wan Lou) | |
| dc.contributor.oralexamcommittee | 李心予(Hsin-Yu Lee),吳益群(Yi-Chun Wu),顏裕庭(Yu-Ting Yan) | |
| dc.subject.keyword | 斑馬魚,外包作用,胚體趨中及擴展作用,Rho,ROCK,Diaphanous,Profilin, | zh_TW |
| dc.subject.keyword | zebrafish,epiboly,convergent extension,Rho,ROCK,Diaphanous,Profilin, | en |
| dc.relation.page | 148 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
