請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4037完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Kai-Pu Chen | en |
| dc.contributor.author | 陳凱普 | zh_TW |
| dc.date.accessioned | 2021-05-13T08:40:57Z | - |
| dc.date.available | 2018-02-24 | |
| dc.date.available | 2021-05-13T08:40:57Z | - |
| dc.date.copyright | 2016-02-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-01-21 | |
| dc.identifier.citation | 1. Merlini, L., et al., Scoliosis in spinal muscular atrophy: natural history and management. Dev Med Child Neurol, 1989. 31(4): p. 501-8.
2. Kiernan, M.C., et al., Amyotrophic lateral sclerosis. Lancet, 2011. 377(9769): p. 942-55. 3. Brzustowicz, L.M., et al., Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature, 1990. 344(6266): p. 540-1. 4. Lefebvre, S., et al., Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 1995. 80(1): p. 155-65. 5. Alias, L., et al., Mutation update of spinal muscular atrophy in Spain: molecular characterization of 745 unrelated patients and identification of four novel mutations in the SMN1 gene. Hum Genet, 2009. 125(1): p. 29-39. 6. Saito, M., et al., [Quantitative analysis of SMN2 based on real-time PCR: correlation of clinical severity and SMN2 gene dosage]. No To Hattatsu, 2005. 37(5): p. 407-12. 7. Monani, U.R., et al., A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet, 1999. 8(7): p. 1177-83. 8. Pellizzoni, L., J. Yong, and G. Dreyfuss, Essential role for the SMN complex in the specificity of snRNP assembly. Science, 2002. 298(5599): p. 1775-9. 9. Carissimi, C., et al., Unrip is a component of SMN complexes active in snRNP assembly. FEBS Lett, 2005. 579(11): p. 2348-54. 10. Martinez, T.L., et al., Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J Neurosci, 2012. 32(25): p. 8703-15. 11. Saal, L., et al., Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation. RNA, 2014. 20(11): p. 1789-802. 12. Cronin, S., O. Hardiman, and B.J. Traynor, Ethnic variation in the incidence of ALS: a systematic review. Neurology, 2007. 68(13): p. 1002-7. 13. Byrne, S., et al., Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry, 2011. 82(6): p. 623-7. 14. Bosco, D.A., et al., Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci, 2010. 13(11): p. 1396-403. 15. Kwiatkowski, T.J., Jr., et al., Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 2009. 323(5918): p. 1205-8. 16. Neumann, M., et al., Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006. 314(5796): p. 130-3. 17. Rosen, D.R., et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993. 362(6415): p. 59-62. 18. Sreedharan, J., et al., TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 2008. 319(5870): p. 1668-72. 19. Vucic, S. and M.C. Kiernan, Pathophysiology of neurodegeneration in familial amyotrophic lateral sclerosis. Curr Mol Med, 2009. 9(3): p. 255-72. 20. Bruijn, L.I., et al., Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science, 1998. 281(5384): p. 1851-4. 21. Liu-Yesucevitz, L., et al., Local RNA translation at the synapse and in disease. J Neurosci, 2011. 31(45): p. 16086-93. 22. Liu, Q. and G. Dreyfuss, A novel nuclear structure containing the survival of motor neurons protein. EMBO J, 1996. 15(14): p. 3555-65. 23. Shan, X., et al., Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A, 2010. 107(37): p. 16325-30. 24. Yamazaki, T., et al., FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep, 2012. 2(4): p. 799-806. 25. Jeong, H., et al., Lethality and centrality in protein networks. Nature, 2001. 411(6833): p. 41-2. 26. Rives, A.W. and T. Galitski, Modular organization of cellular networks. Proc Natl Acad Sci U S A, 2003. 100(3): p. 1128-33. 27. Lin, C.C., et al., Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy. BMC Syst Biol, 2010. 4: p. 138. 28. Schena, M., et al., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995. 270(5235): p. 467-70. 29. Iacobas, A.D., S. Iacobas, and D.C. Spray, The 'patholog' of the genes expression profile, a new tool in defining, evaluating, and classifying genetic diseases. Rom J Physiol, 2000. 37(1-4): p. 59-67. 30. Wachi, S., K. Yoneda, and R. Wu, Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics, 2005. 21(23): p. 4205-8. 31. Chuang, H.Y., et al., Network-based classification of breast cancer metastasis. Mol Syst Biol, 2007. 3: p. 140. 32. Licata, L., et al., MINT, the molecular interaction database: 2012 update. Nucleic Acids Res, 2012. 40(Database issue): p. D857-61. 33. Orchard, S., et al., The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res, 2014. 42(Database issue): p. D358-63. 34. Prasad, T.S., K. Kandasamy, and A. Pandey, Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol Biol, 2009. 577: p. 67-79. 35. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Res, 2006. 34(Database issue): p. D535-9. 36. Xenarios, I., et al., DIP: the database of interacting proteins. Nucleic Acids Res, 2000. 28(1): p. 289-91. 37. Millino, C., et al., Different atrophy-hypertrophy transcription pathways in muscles affected by severe and mild spinal muscular atrophy. BMC Med, 2009. 7: p. 14. 38. Bakay, M., et al., Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain, 2006. 129(Pt 4): p. 996-1013. 39. Dadgar, S., et al., Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J Cell Biol, 2014. 207(1): p. 139-58. 40. Ritchie, M.E., et al., A comparison of background correction methods for two-colour microarrays. Bioinformatics, 2007. 23(20): p. 2700-7. 41. Gautier, L., et al., affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004. 20(3): p. 307-15. 42. Bolstad, B.M., preprocessCore: A collection of pre-processing functions. R package version 1.26.1. 43. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. 44. Carlson, M., org.Hs.eg.db: Genome wide annotation for Human. R package version 2.14.0. 45. R Development Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrived from http://www.R-project.org. 46. Pemmaraju, S.V. and S.S. Skiena, Computational discrete mathematics : combinatorics and graph theory with Mathematica. 2003, Cambridge, U.K. ; New York: Cambridge University Press. xiii, 480 p. 47. Skouteli, H. and V. Dubowitz, Fasciculation of the eyelids: an additional clue to clinical diagnosis in spinal muscular atrophy. Neuropediatrics, 1984. 15(3): p. 145-6. 48. Benady, S.G., Spinal muscular atrophy in childhood: review of 50 cases. Dev Med Child Neurol, 1978. 20(6): p. 746-57. 49. Bokuda, K. and T. Shimizu, [Fasciculation potentials in ALS-significance, and relationship with clinical features]. Rinsho Shinkeigaku, 2014. 54(12): p. 1083-5. 50. Ruiz, R., et al., Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice. J Neurosci, 2010. 30(3): p. 849-57. 51. Chin, E.R., et al., Perturbations in intracellular Ca2+ handling in skeletal muscle in the G93A*SOD1 mouse model of amyotrophic lateral sclerosis. Am J Physiol Cell Physiol, 2014. 307(11): p. C1031-8. 52. Sahoo, S.K., et al., Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J Biol Chem, 2013. 288(10): p. 6881-9. 53. Chauveau, C., J. Rowell, and A. Ferreiro, A rising titan: TTN review and mutation update. Hum Mutat, 2014. 35(9): p. 1046-59. 54. Bullard, B., et al., Association of the chaperone alphaB-crystallin with titin in heart muscle. J Biol Chem, 2004. 279(9): p. 7917-24. 55. Wang, T., et al., Interaction of amyotrophic lateral sclerosis/frontotemporal lobar degeneration-associated fused-in-sarcoma with proteins involved in metabolic and protein degradation pathways. Neurobiol Aging, 2015. 36(1): p. 527-35. 56. Han, K.J., et al., Ubiquitin-specific protease 9x deubiquitinates and stabilizes the spinal muscular atrophy protein-survival motor neuron. J Biol Chem, 2012. 287(52): p. 43741-52. 57. Deger, J.M., J.E. Gerson, and R. Kayed, The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell, 2015. 58. Sugasawa, K., et al., Two human homologs of Rad23 are functionally interchangeable in complex formation and stimulation of XPC repair activity. Mol Cell Biol, 1997. 17(12): p. 6924-31. 59. Chen, L. and K. Madura, Evidence for distinct functions for human DNA repair factors hHR23A and hHR23B. FEBS Lett, 2006. 580(14): p. 3401-8. 60. Fatimababy, A.S., et al., Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis. FEBS J, 2010. 277(3): p. 796-816. 61. Wang, C., et al., Clusterin protects hepatocellular carcinoma cells from endoplasmic reticulum stress induced apoptosis through GRP78. PLoS One, 2013. 8(2): p. e55981. 62. Jongpiputvanich, S., T. Sueblinvong, and T. Norapucsunton, Mitochondrial respiratory chain dysfunction in various neuromuscular diseases. J Clin Neurosci, 2005. 12(4): p. 426-8. 63. Soraru, G., et al., Activities of mitochondrial complexes correlate with nNOS amount in muscle from ALS patients. Neuropathol Appl Neurobiol, 2007. 33(2): p. 204-11. 64. Ghiasi, P., et al., Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurol Res, 2012. 34(3): p. 297-303. 65. Lapuente-Brun, E., et al., Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science, 2013. 340(6140): p. 1567-70. 66. Havugimana, P.C., et al., A census of human soluble protein complexes. Cell, 2012. 150(5): p. 1068-81. 67. Shpargel, K.B. and A.G. Matera, Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci U S A, 2005. 102(48): p. 17372-7. 68. Matera, A.G. and Z. Wang, A day in the life of the spliceosome. Nat Rev Mol Cell Biol, 2014. 15(2): p. 108-21. 69. Gabanella, F., et al., Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS One, 2007. 2(9): p. e921. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4037 | - |
| dc.description.abstract | 脊髓型肌肉萎縮症和脊髓側索硬化症是由運動神經元退化及伴隨肌肉萎縮的致命性疾病,雖然兩者的致病突變基因不同,但兩者間有共同表現的症狀。為了探討兩疾病間可能的共同致病機制,我們分別建立了脊髓型肌肉萎縮症和脊髓側索硬化症的差異化蛋白質共表現網絡(DCPINs)。我們在此利用gene ontology將有差異的蛋白質網絡做功能上的分群,接著我們討論講疾病間模組的關係性。藉由結合靜態的蛋白質網絡以及mRNA的基因表現量的分析,我們找到了錯誤的蛋白質交互作用可能會導致細胞中鈣離子循環失控。我們發現對抗鈣離子及熱所導致的細胞壓力有關的蛋白質交互作用。此外,我們也找到和蛋白質ubiquitination與proteasome降解相關的蛋白質交互作用。同時我們進一步發現和ATP生成相關之缺失的蛋白質作用也出現在粒線體複合體I, III及V,並加以進行探討。參與RNA剪接作用的蛋白質snRNPs的一部分組成蛋白-七環Sm蛋白,也在兩個疾病中被發現有較低的相關性並可能進階導致snRNPs生成的失敗。在本篇論文中,我們認為這兩疾病的肌肉中所產生的細胞壓力,於疾病發生時可能扮演了很重要的角色。 | zh_TW |
| dc.description.abstract | Spinal muscular atrophy (SMA) and¬ amyotrophic lateral sclerosis (ALS) are two devastating diseases caused by motor neuron degeneration and accompanied with muscle weakness. Though the mutated genes causing SMA and ALS are different, some of the phenotypes are the same in both diseases. To understand the possibility of common and dysregulated mechanisms between SMA and ALS, differentially co-expressed protein interaction networks (DCPINs) are constructed in SMA and ALS respectively. Gene ontology analysis is applied to help us realize the functions of these disrupted protein interactions. Both SMA and ALS related modules were further isolated and discussed. By means of integrative analysis using static protein interaction network and the microarray gene expression profiles, perturbed protein interactions involving in calcium cycling were found in this study. The possible responses against stress caused by calcium and thermogenesis were also discovered. Furthermore, we identified the protein interactions associated with protein ubiquitination and proteasomal degradation. Additionally, we found the defective protein interactions engaged in path of ATP synthesis of mitochondrial protein complex I, III and V and have further discussion. Proteins involved in RNA splicing were also found and showed the potential deformity in heptameric ring consisted of Sm proteins during formation of snRNPs. In this study, we suggest that the stress induced in the muscle of SMA and ALS might play an important role in the pathology of both diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T08:40:57Z (GMT). No. of bitstreams: 1 ntu-105-R02945027-1.pdf: 4498933 bytes, checksum: 8ab6274d5c52c554501ed379d30eb1b7 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書….……………………………………...………….................................i
誌謝………………………..………………………………………………………………..ii 中文摘要….………….……….………….…………………...............................................iii Abstract…...………….……………………………………..….…..…..………….…..........iv Contents…………………………………………………….………….……………...........vi List of Figures…………………………………………………………..……………...….viii List of Tables……………………………………………………………….……….………x Chapter 1 Introduction…………………….…………………...…………………….……1 1.1 Motor neuron disease……………….……..………………………………………….1 1.1.1 Spinal muscular atrophy…………………….……..……….………………...….1 1.1.2 Amyotrophic lateral sclerosis……………………..….……….………...……….2 1.1.3 Interaction between SMA and ALS…....……….……….………..…….…..……3 1.2 Protein interaction network………………..…………………………………...……..3 1.3 Microarray analysis……………………………………………………………..…….4 1.4 Integrative analysis of protein interaction network…………………………..…........4 Chapter 2 Materials and methods.….…………………….…............................................6 2.1 Human protein interaction network……………………………………………..........6 2.2 mRNA expression profiles………………………………….……………...…………6 2.3 Construction of differentially co-expressed PIN ………...…………..….…..….……7 2.3.1 Spearman’s correlation coefficient…………………………………....................7 2.3.2 Differentially co-expressed PIN …………...………………………….…..…….7 2.4 Identification of disease-specific functional modules………………..……..….….….8 2.4.1 Gene ontology…………………………………….………..…….………………8 2.4.2 Hypergeometric test………..……………………………………….……………9 2.4.3 Enrichment map………………………….……………………..……...……….10 2.4.4 Modules……………………….………………………………….………..…....10 2.5 Network properties…………………………………….…………....……………….10 2.5.1 Degree………………………………………………………………...………...10 2.5.2 Clustering coefficient…………………………………….………………..........11 2.5.3 Betweenness centrality………………………………...………………………..11 2.5.4 Closeness centrality………………………………………...…………………..11 Chapter 3 Results………………………………………………………..…………….….12 3.1 Identification of dysregulated PPIs in SMA and ALS ………………..……….……12 3.2 Recognitions of enriched modules………………………………………..…….…...13 Chapter 4 Discussion………………………………………………………………...…...15 4.1 ‘Muscle system process’…………………………………………………………….15 4.2 ‘Proteasome-mediated ubiquitin-dependent protein catabolic process’…...………..16 4.3 ‘Respiratory electron transport chain’…………………………………..……...…...18 4.4 ‘RNA splicing’……………………………………………………………………....20 Chapter 5 Conclusion…………………………………………………………..…….…..22 References…………………………………………………………………………...……..23 Figures…………………………………………………………………………………...…29 Tables…………………..……………...……………………………………………….…..43 | |
| dc.language.iso | en | |
| dc.subject | 和RNA的剪接作用 | zh_TW |
| dc.subject | 脊髓型肌肉萎縮症 | zh_TW |
| dc.subject | 脊髓側索硬化症 | zh_TW |
| dc.subject | 差異化蛋白質共表現網絡 | zh_TW |
| dc.subject | 壓力 | zh_TW |
| dc.subject | 鈣離子的失調 | zh_TW |
| dc.subject | ubiquitination | zh_TW |
| dc.subject | proteasome的蛋白質降解 | zh_TW |
| dc.subject | ATP | zh_TW |
| dc.subject | proteasomal degradation | en |
| dc.subject | ATP | en |
| dc.subject | SMA | en |
| dc.subject | ALS | en |
| dc.subject | DCPINs | en |
| dc.subject | module | en |
| dc.subject | stress | en |
| dc.subject | calcium dysregulation | en |
| dc.subject | ubiquitination | en |
| dc.subject | and RNA splicing | en |
| dc.title | 藉由蛋白質網絡探討脊髓肌肉萎縮症和脊髓側索硬化症的關聯性 | zh_TW |
| dc.title | Comparative analysis of condition-specific protein interaction networks between spinal muscular atrophy and amyotrophic lateral sclerosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 歐陽彥正(Yen-Jen Oyang) | |
| dc.contributor.oralexamcommittee | 黃宣誠(Hsuan-Cheng Huang),林振慶(Chen-Ching Lin),王禹超(Yu-Chao Wang) | |
| dc.subject.keyword | 脊髓型肌肉萎縮症,脊髓側索硬化症,差異化蛋白質共表現網絡,壓力,鈣離子的失調,ubiquitination,proteasome的蛋白質降解,ATP,和RNA的剪接作用, | zh_TW |
| dc.subject.keyword | SMA,ALS,DCPINs,module,stress,calcium dysregulation,ubiquitination,proteasomal degradation,ATP,and RNA splicing, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-01-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 4.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
