Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40378
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林順福
dc.contributor.authorYa-Chi Yangen
dc.contributor.author楊雅淇zh_TW
dc.date.accessioned2021-06-14T16:46:06Z-
dc.date.available2018-12-31
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citation王雲平。2004。豆類作物種間及種內基因體對應區域之DNA序列變異。國立台灣大學農藝學研究所碩士論文。

朱雅玲。2002。利用SSR分子標誌建立水稻連鎖圖譜及分析F2族群之遺傳重組。國立台灣大學農藝學研究所碩士論文。

黃淑芬。2002。青剛櫟葉綠體DNA變異的空間分布模式。國立台灣大學農藝學研究所碩士論文。

Angiosperm Phylogeny Group (APG II). 2003. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399-436.

Asano, T., T. Tsudzuki, S. Takahashi, H. Shimada, K. Kadowaki. 2004. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res. 11: 93-99.

Baker, D. and A. Sail. 2001. Protein structure prediction and structural genomics. Science 29: 93-96.

Breathnach, R. and Chambon P. 1981. Organization and expression of eukaryotic split genes coding for proteins. Annu. Rev. Biochem. 50: 349-383

Burge, C. B., R. A. Padgett, and P. A. Sharp. 1998. Evolutionary fates and origins of U12-type introns. Mol. Cell. 2: 773-785.

Cai, Z., C. Penaflor, J. V. Kuehl, J. Leebens-Mack, J. E. Carlson, C. W. dePamphilis, J. L. Boore, and R. K. Jansen. 2006. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol. Biol. 6: 77.

Carels, N., P. Hatey, K. Jabbari, and G. Bernardi. 1998. Compositional properties of homologous coding sequences from plants. J. Mol. Evol. 46: 45-53.

Clegg, M. T., B. S. Gaut, G. H. Learn, Jr., and B. R. Morton. 1994. Rates and patterns of chloroplast DNA evolution. Proc. Natl. Acad. Sci. USA 91: 6795-6801.

Cosner, M. E., R. K. Jansen, J. D. Palmer, and S. R. Downie. 1997. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr. Genet. 31: 419-429.

Curtis, S. E.,and M. T. Clegg. 1984. Molecular evolution of chloroplast DNA sequences. Mol. Biol. Evol. 1: 291-301.

De Las Rivas, J., J. J. Lozano, and A. R. Ortiz. 2002. Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res. 12: 567-583.

Doyle, J. J., J. I. Davis, R. J. Soreng, D. Garvin, and M. J. Anderson. 1992. Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. Sci. USA 89: 7722-7726.

Doyle, J. J., and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15.

Doyle, J. J., J. L. Doyle, J. A. Ballenger, and J. D. Palmer. 1996. The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. Mol. Phylogen. Evol. 5: 429-438.

Dumolin-Lapègue, S., M. H. Pemonge, and R. J. Petit. 1998. Association between chloroplast and mitochondrial lineages in oaks. Mol. Biol. Evol. 15: 1321-1331.

Enomoto, S. I., Y. Ogihara, and K. Tsunewaki. 1985. Studies on the origin of crop species by restriction endonuclease analysis of organellar DNA. I. Phylogenetic relationships among ten cereals revealed by the restriction fragment patterns of chloroplast DNA. Jpn. J. Gen. 60: 411-424.

Ferris, C., R. P. Oliver, A. J. Davy, and G. M. Hewitt. 1995. Using chloroplast DNA to trace postglacial migration routes of oaks into Britain. Mol. Ecol. 4: 731-738.

Gaut, B. S. 1998. Molecular clocks and nucleotide substitution rates in higher plants. Evol. Biol. 30: 93-120.

Guo, X., S. Castillo-Ramírez, V. González, P. Bustos, J. L. Fernández-Vázquez, R. I. Santamaría, J. Arellano, M. A. Cevallos, and G. Dávila. 2007. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts. BMC Genomics 8: 228.

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.

Hiratsuka, J., H. Shimada, R. Whittier, T. Ishibashi, M. Sakamoto, M. Mori, C. Kondo, Y. Honji, C. R. Sun, B. Y. Meng, Y. Q. Li, A. Kanno, Y. Nishizawa, A. Hirai, K. Shinozaki, and M. Sugiura. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217: 185-194.

http://www.ncbi.nlm.nih.gov/genomes/ORGANELLES/ plastids_tax.html

Jansen, R. K., L. A. Raubeson, J. L. Boore, C. W. dePamphilis, T. W. Chumley, R. C. Haberle, S. K. Wyman, A. J. Alverson, R. Peery, S. J. Herman H. M. Fourcade, J. V. Kuehl, J. R. McNeal, J. Leebens-Mack, and L. Cui. 2005. Methods for obtaining and analyzing whole chloroplast genome sequences. Meth. Enzymol. 395: 348-384.

Jurica, M. S. and B. L. Stoddard. 1999. Homing endonucleases: structure, function and evolution. Cell. Mol. Life Sci. 55: 1304-1326.

Kato, T., T. Kaneko, S. Sato, Y. Nakamura, and S. Tabata. 2000. Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res. 7: 323-330.

Kelchner, S. A. 2002. Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. Am. J. Bot. 89(10): 1651-1669.

Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.

Knox, E. B. and J. D. Palmer. 1998. Chloroplast DNA evidence on the origin and radiation of the giant lobelias in eastern Africa. Syst. Bot. 23: 109-149.

Lavin, M., J. J. Doyle, and J. D. Palmer. 1990. Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution 44: 390-402.

Leister, D. 2003. Chloroplast research in the genomic age. Trends Genet. 19: 47-56.

Maier, R. M., K. Neckermann, G. L. Igloi, and H. Kossel. 1995. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251: 614-628.

Matsuoka, Y., Y. Yamazaki, Y. Ogihara, and K. Tsunewaki. 2002. Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol. Biol. Evol. 19: 2084-2091.

Maxam, A. M. and W. Gilbert. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74: 560-564.

Milligan, B. G., J. N. Hampton, and J. D. Palmer. 1989. Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol. Biol. Evol. 6: 355-368.

Mount, S. M. 1982. A catalogue of splice junction sequences. Nucl. Acids. Res. 10: 459-472.

Niazi, G. A. and S. Riaz-ud-Din. 2006. Biotechnology and genomics in medicine - a review. World J. Med. Sci. 1: 72-81.

Ogihara, Y., K. Isono, T. Kojima, A. Endo, M. Hanaoka, T. Shiina, T. Terachi, S. Utsugi,M. Murata, N. Mori, S. Takumi, K. Ikeo, T. Gojobori, R. Murai, K. Murai, Y. Matsuoka, Y. Ohnishi, H. Tajiri, and K. Tsunewaki. 2002. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol. Genet. Genomics 266: 740-746.
Palmer, J. D. 1990. Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet. 6: 115-120.

Palmer, J. D., J. M. Nugent, and L. A. Herbon. 1987. Unusual structure of geranium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc. Natl. Acad. Sci. USA. 84: 769-773.

Palmer, J. D., B. Osorio, and W. F. Thompson. 1988. Evolutionary significance of inversions in legume chloroplast DNAs. Curr. Genet. 14: 65-74.

Perry, A. S. and K. H. Wolfe. 2002. Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. J. Mol. Evol. 55: 501-508.

Petit, R. J., E. Pineau, B. Demesure, R. Bacilieri, A. Ducousso, and A. Kremer. 1997. Chloroplast DNA footprints of postglacial recolonization by oaks. Proc. Natl. Acad. Sci. USA 94: 9996-10001.

Raven, P. H. and R. M. Polhill. 1981. Biography of the Leguminosae. In: Advances in Legume Systematics. pp. 27-34. Polhill, R. M. and P. H. Raven (eds.) Crown, Royal Botanic Gardens, Kew, England.

Ravi., J. P. Khurana, A. K. Tyagi, and P. Khurana. 2008. An update on chloroplast genomes. Plant Syst. Evol. 271: 101-122.

Rodríguez-Trelles, F., R. Tarrío, and F. J. Ayala. 2006. Origins and evolution of spliceosomal introns. Annu. Rev. Genet. 40: 47-76.

Salinas, J., G. Matassi, L. M. Montero, and G. Bernardi. 1988. Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucleic Acids Res. 16: 4269-4285.

Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467.

Saski, C., S. B. Lee, H. Daniell, T. C. Wood, J. Tomkins, H. G. Kim, and R. K. Jansen. 2005. Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol. Biol. 59: 309-322.

Saski, C., S. B. Lee, S. Fjellheim, C. Guda, R. K. Jansen, H. Luo, J. Tomkins, O. A. Rognli, H. Daniell, and J. L. Clarke. 2007. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor. Appl. Genet. 115: 571-590.

Sato, S., Y. Nakamura, T. Kaneko, E. Asamizu, S. Tabata. 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6: 283-290.

Schaal, B. A., D. A. Haywdrth, K. M. Olsen, J. T. Rauscher, and W. A. Smith. 1998. Phylogeographic studies in plants: Problem and prospects. Mol. Ecol. 7: 465-474.

Schoulink, K. G. 2002. Functional and comparative genomics of pathogenic bacteria. Curr. Opin. Microbiol. 5: 20-26.

Shaw, J., E. B. Lickey, E. E. Schilling, and R. L. Small. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot. 94: 275-288.

Shaw, J. and R. L. Small. 2005. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am. J. Bot. 92: 2011-2030.

Soll, J. and E. Schleiff. 2004. Protein import into chloroplasts. Nat. Rev. Mol. Cell Biol. 5: 198-208.

Strauss, S. H., J. D. Palmer, G. T. Howe, and A. H. Doerksen. 1988. Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearranged. Proc. Natl. Acad. Sci. USA 85: 3898-3902.

Tang, J., H. Xia, M. Cao, X. Zhang, W. Zeng, S. Hu, W. Tong, J. Wang, J. Wang, J. Yu, H Yang, and L. Zhu. 2004. A comparison of rice chloroplast genomes. Plant Physiol. 135: 412-420.

Vogel, J. and T. Börner. 2002. Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing. EMBO J. 21: 3794-3803.

Wakasugi, T., J. Tsudzuki, S. Ito, K. Nakashima, T. Tsudzuki, and M. Sugiura. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc. Natl. Acad. Sci. USA 91: 9794.

Wojciechowski, M. F., M. Lavin, and M. J. Sanderson. 2004. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Am. J. Bot. 91: 1846-1862.

Wolfe, K. H., W. H. Li, and P. M. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84: 9054-9058.

Xu, M. Q., S. D. Kathe, H. Goodrich-Blair, S. A. Nierzwicki-Bauer, and D. A. Shub. 1990. Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Science 250: 1566-1570.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40378-
dc.description.abstract本研究由NCBI的GenBank資料庫中搜尋四種豆科植物(百脈根、疏花苜蓿、毛豆及菜豆)、雙子葉模式植物(阿拉伯芥)及單子葉模式植物(水稻)之葉綠體整個基因體DNA序列,並且進行序列比對分析,結果發現葉綠體DNA序列之內含子(intron)與外顯子(exon)交界不符合GT/AG序列法則;辨識出93個保留區長度佔基因體總長8.59%~10.70%,大都分布於基因區,且編碼區保留性較高,位於rRNA與tRNA基因之保留區在物種間相似性較高。經由上述比對分析後設計出5引子對,位於葉綠體基因體的位置分別為psbA~trnK、psbB~psbH、rpl23~trnI、trnR-ACG~trnN-GUU及trnY-GUA~ trnD-GUC,預期實際應用在其他物種上所能增幅之變異序列長度分別約為500~600 bp、800~900 bp、650~700 bp (豆科以外物種為350 bp)、700~800 bp (雙子葉植物為400 bp)及500~600 bp。上述5組引子對實際應用在包括豌豆、落花生、綠豆、毛豆(兩個品種)、豇豆(兩個亞種)、紅豆、蠶豆、甜瓜、茶樹、馬鈴薯、水稻(三個品種)、玉米、大芻草及薏苡等14個物種之PCR長度變異,具有良好之效果。選擇其中三組引子對(基因體位置為psbA~trnK、psbB~psbH及trnR-ACG~trnN-GUU)增幅片段之序列進行親緣分析,以最大簡約法及鄰接法之分群結果皆與目前植物分類相符,故三組引子對在物種間親緣關係分析及物種鑑定上都有不錯的效果,位於psbA~trnK及psbB~psbH之引子對效果尤佳,但是三組引子對在物種內變異的辨識效果不甚理想,在兩個毛豆品種間(高雄5號與高雄8號)、兩個豇豆亞種間(短豇豆與長豇豆)及三個水稻品種間(台農67號、台稉9號與台中秈10號)的增幅片段沒有明顯差異存在。本研究設計之引子對可有效辨識物種間差異性,但是欲辨識物種內差異性則需再搜尋其它變異區域重新設計引子並加以驗證。zh_TW
dc.description.abstractThe complete chloroplast genome sequences of four legumes (Lotus japonicus, Medicago truncatula, Glycine max, Phaseolus vulgaris), the model plant of dicotyledon (Arabidopsis thaliana), and the model plant of monotyledon (Oryza sativa ssp. japonica) were searched from the GenBank database of NCBI for identifying chloroplast DNA sequence variation among plant species. Result from sequence alignment and comparison indicated that the junctions between intron and exon of the chloroplast genes didn’t follow the GC/AG rule. A total of 93 conserved regions accounting for 8.59%~10.70% length of the whole genome were identified. Most of conserved sequences were located in the coding regions. The conserved regions of rRNA and tRNA genes exhibited higher sequence similarity among plant species. Five primer pairs were designed from the conserved regions distributing in psbA~trnK, psbB~psbH, rpl23~trnI, trnR-ACG~trnN-GUU and trnY-GUA~trnD-GUC, respectively to amplify sequences about 500~600 bp, 800~900 bp, 650~700 bp (350 bp, not legume species), 700~800 bp (400 bp in dicotyledon), and 500~600 bp. The application of above primer pairs were verified from the length variation in PCR products of 14 tested species, including pea (Pisum sativum), peanut (Arachis hypogaea), mungbean (Vigna radiata), vegetable soybean (Glycine max), cowpea (Vigna unguiculata), azuki bean (Vigna angularis), broad bean (Vicia faba), melon (Cucumis melo), tea (Camellia sinensis), potato (Solanum tuberosum), rice (Oryza sativa), maize (Zea mays), teosinte (Euchlaena mexicana), and Jobs tears (Coix lacryma-jobi). Three primer pairs located in psbA~trnK, psbB~psbH and trnR-ACG~trnN-GUU regions were applied in phylogenetic analysis according to Maximum parsimony and Neighbor-joining methods. The consistent results between the phylogenetic analysis and taxonomy indicated the application potential of the three primer pairs in phylogenetic analysis and species identification. However, due to no sequence variation observed in amplified regions between two vegetable soybean varieties (KS5 and KS8), two cowpea subspecies (Vigna unguiculata ssp. cylindrica and Vigna unguiculata ssp. sesquipedalis), and among three rice varieties (TNG67, TK9, and TCS10), the three primer pairs are not effective in identifying variation within species. The designed primers in this study were effective in identifying the differences inter species. It is necessary to screen chloroplast DNA sequence variation and design new primers if we want to identify difference within species.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:46:06Z (GMT). No. of bitstreams: 1
ntu-97-R95621122-1.pdf: 1095685 bytes, checksum: 1acd793e7fc217203dd8abcadcdf4857 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
表目錄 viii
圖目錄 ix
一、前言 1
二、前人研究 3
三、材料與方法 7
(一) 資料庫序列之搜尋及比對 7
1. 葉綠體DNA序列之排列比對 7
2. 劃分保留區與非保留區序列 7
3. 利用保留區序列設計引子 8
(二) 設計引子實際應用在其他物種 10
1. DNA萃取 11
2. 聚合酶連鎖反應 12
3. 瓊脂膠電泳分析與目標片段定序 12
4. 序列資料分析 12
四、結果 14
(一) 資料庫搜尋葉綠體DNA序列綜合比對 14
1. 保留區序列佔整個基因體的比例 15
2. 葉綠體基因體中GC所佔之比例 16
3. 葉綠體基因體中intron邊界之序列分析 17
(二) 葉綠體基因體不同保留區之間的差異 17
(三) 葉綠體基因體保留區內之差異 21
(四) 設計引子實際應用在其他物種間變異分析 21
(五) 設計引子實際應用在其他物種內變異分析 32
五、討論 34
(一) 資料庫搜尋葉綠體DNA序列綜合比對 34
1. 保留區序列佔整個基因體的比例 35
2. 葉綠體基因體中GC所佔之比例 35
3. 葉綠體基因體中intron邊界之序列分析 36
(二) 葉綠體基因體不同保留區之間的差異 36
(三) 葉綠體基因體保留區內之差異 37
(四) 設計引子實際應用在其他物種間變異分析 38
(五) 設計引子實際應用在其他物種內變異分析 39
六、結論 40
參考文獻 41
附錄 48
dc.language.isozh-TW
dc.subject引子設計zh_TW
dc.subject葉綠體基因體zh_TW
dc.subject排列比對zh_TW
dc.subjectchloroplast genomeen
dc.subjectprimer designeden
dc.subjectalignmenten
dc.title作物葉綠體DNA序列變異之辨識及應用zh_TW
dc.titleIdentification and Application of Chloroplast DNA Sequence Variation in Crop Speciesen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉茂生,盧煌勝,劉啟東,王仕賢
dc.subject.keyword葉綠體基因體,排列比對,引子設計,zh_TW
dc.subject.keywordchloroplast genome,alignment,primer designed,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved