Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40375
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰(Ruey-Feng Chang)
dc.contributor.authorChih-Hsuan Chienen
dc.contributor.author簡稚軒zh_TW
dc.date.accessioned2021-06-14T16:46:02Z-
dc.date.available2008-08-06
dc.date.copyright2008-08-06
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citation[1] L. L. Humphrey, M. Helfand, B. K. Chan, and S. H. Woolf, 'Breast cancer screening: a summary of the evidence for the U.S. Preventive Services Task Force,' Ann Intern Med, vol. 137, pp. 347-60, Sep 3 2002.
[2] J. A. Harvey and V. E. Bovbjerg, 'Quantitative assessment of mammographic breast density: relationship with breast cancer risk,' Radiology, vol. 230, pp. 29-41, Jan 2004.
[3] T. M. Kolb, J. Lichy, and J. H. Newhouse, 'Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,' Radiology, vol. 225, pp. 165-75, Oct 2002.
[4] M. T. Mandelson, N. Oestreicher, P. L. Porter, D. White, C. A. Finder, S. H. Taplin, and E. White, 'Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers,' J Natl Cancer Inst, vol. 92, pp. 1081-7, Jul 5 2000.
[5] E. D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J. K. Baum, S. Acharyya, E. F. Conant, L. L. Fajardo, L. Bassett, C. D'Orsi, R. Jong, and M. Rebner, 'Diagnostic performance of digital versus film mammography for breast-cancer screening,' N Engl J Med, vol. 353, pp. 1773-83, Oct 27 2005.
[6] W. A. Berg, J. D. Blume, J. B. Cormack, E. B. Mendelson, D. Lehrer, M. Bohm-Velez, E. D. Pisano, R. A. Jong, W. P. Evans, M. J. Morton, M. C. Mahoney, L. H. Larsen, R. G. Barr, D. M. Farria, H. S. Marques, and K. Boparai, 'Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer,' JAMA, vol. 299, pp. 2151-63, May 14 2008.
[7] W. Buchberger, A. Niehoff, P. Obrist, P. DeKoekkoek-Doll, and M. Dunser, 'Clinically and mammographically occult breast lesions: detection and classification with high-resolution sonography,' Semin Ultrasound CT MR, vol. 21, pp. 325-36, Aug 2000.
[8] P. Crystal, S. D. Strano, S. Shcharynski, and M. J. Koretz, 'Using sonography to screen women with mammographically dense breasts,' AJR Am J Roentgenol, vol. 181, pp. 177-82, Jul 2003.
[9] P. B. Gordon and S. L. Goldenberg, 'Malignant breast masses detected only by ultrasound. A retrospective review,' Cancer, vol. 76, pp. 626-30, Aug 15 1995.
[10] S. S. Kaplan, 'Clinical utility of bilateral whole-breast US in the evaluation of women with dense breast tissue,' Radiology, vol. 221, pp. 641-9, Dec 2001.
[11] D. Kotsianos-Hermle, K. M. Hiltawsky, S. Wirth, T. Fischer, K. Friese, and M. Reiser, 'Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound,' Eur J Radiol, May 9 2008.
[12] J. A. Shipley, F. A. Duck, D. A. Goddard, M. R. Hillman, M. Halliwell, M. G. Jones, and B. T. Thomas, 'Automated quantitative volumetric breast ultrasound data-acquisition system,' Ultrasound Med Biol, vol. 31, pp. 905-17, Jul 2005.
[13] Y. Ikedo, D. Fukuoka, T. Hara, H. Fujita, E. Takada, T. Endo, and T. Morita, 'Development of a fully automatic scheme for detection of masses in whole breast ultrasound images,' Med Phys, vol. 34, pp. 4378-88, Nov 2007.
[14] Y. Kim, J. H. Kim, C. Basoglu, and T. C. Winter, 'Programmable ultrasound imaging using multimedia technologies: a next-generation ultrasound machine,' IEEE Transactions on Information Technology in Biomedicine, vol. 1, pp. 19-29, 1997.
[15] 'A software package for portable three-dimensional ultrasound imaging.'
[16] X. Y. Cheng, I. Akiyama, W. Y., and I. K., 'Breast tumor diagnostic system using three-dimensional ultrasonic echography,' Systems and Computers in Japan, vol. 30, pp. 1-10, 1999.
[17] L.A.Zadeh, 'Fuzzy algorithms,' Info.Control, vol. 12, pp. 94-102, 1968.
[18] A. Rakotomamonjy, P. Deforge, and P. Marche, 'Wavelet-based speckle noise reduction in ultrasound B-scan images,' Ultrason.Imaging, vol. 22, pp. 73-94, 04 2000.
[19] E. Marom, S. Kresic-Juric, and L. Bergstein, 'Speckle noise in bar-code scanning systems--power spectral density and SNR,' Appl.Opt., vol. 42, pp. 161-174, 01/10/ 2003.
[20] K. Horsch, M. L. Giger, C. J. Vyborny, and L. A. Venta, 'Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography,' Acad.Radiol., vol. 11, pp. 272-280, 03 2004.
[21] M. L. Giger, H. Al Hallaq, Z. Huo, C. Moran, D. E. Wolverton, C. W. Chan, and W. Zhong, 'Computerized analysis of lesions in US images of the breast,' Acad.Radiol., vol. 6, pp. 665-674, 11 1999.
[22] J. M. Thijssen, B. J. Oosterveld, and R. F. Wagner, 'Gray level transforms and lesion detectability in echographic images,' Ultrason.Imaging, vol. 10, pp. 171-195, 07 1988.
[23] F. K. H. Quek and C. Kirbas, 'Vessel extraction in medical images by wave-propagation and traceback,' IEEE Trans.Med.Imaging, vol. 20, pp. 117-131, Feb 2001.
[24] K. Z. Abd-Elmoniem, A. B. M. Youssef, and Y. M. Kadah, 'Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion,' IEEE Trans.Biomedical Engineering, vol. 49, pp. 997-1014, 09 2002.
[25] D. Marr and E. Hildreth, 'Theory of Edge-Detection,' Proceedings of the Royal Society of London Series B-Biological Sciences, vol. 207, pp. 187-217, 1980.
[26] K. I. Laws, 'Textured Image Segmentation,' USCIPI Report 940, January 1980.
[27] R. N. Czerwinski, D. L. Jones, and W. D. O'Brien, Jr., 'Edge detection in ultrasound speckle noise,' Austin, TX, USA, 1994, pp. 304-308.
[28] R. N. Czerwinski, D. L. Jones, and W. D. O'Brien, 'Detection of lines and boundaries in speckle images - Application to medical ultrasound,' Ieee Transactions on Medical Imaging, vol. 18, pp. 126-136, Feb 1999.
[29] R. F. Wagner, M. F. Insana, and S. W. Smith, 'Fundamental Correlation Lengths of Coherent Speckle in Medical Ultrasonic Images,' Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 35, pp. 34-44, Jan 1988.
[30] R. M. Haralick, 'Digital Step Edges from Zero Crossing of 2nd Directional-Derivatives,' Ieee Transactions on Pattern Analysis and Machine Intelligence, vol. 6, pp. 58-68, 1984.
[31] S. Nadarajah, 'Statistical distributions of potential interest in ultrasound speckle analysis,' Physics in Medicine and Biology, vol. 52, pp. N213-N227, May 21 2007.
[32] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, 'SCENE LABELING BY RELAXATION OPERATIONS,' IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-6, pp. 420-433, 1976.
[33] R. A. Hummel and S. W. Zucker, 'On the Foundations of Relaxation Labeling Processes,' Ieee Transactions on Pattern Analysis and Machine Intelligence, vol. 5, pp. 267-287, 1983.
[34] X. Y. Cheng, A.Ohya, M. Natori, and M. Nakajima, 'Boundary extraction method for three dimensional ultrasonic echo imaging using fuzzy reasoning and relaxation techniques,' pp. 1610-1614.
[35] A. Rosenfeld and J. L. Pfaltz, 'Sequential operations in digital processing,' JACM, 1966.
[36] S. Yu and L. Guan, 'A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films,' IEEE Trans.Med.Imaging, vol. 19, pp. 115-126, 02 2000.
[37] K. Horsch, M. L. Giger, C. J. Vyborny, and L. A. Venta, 'Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography,' Academic Radiology, vol. 11, pp. 272-280, Mar 2004.
[38] Y. H. Chou, C. M. Tiu, G. S. Hung, S. C. Wu, T. Y. Chang, and H. K. Chiang, 'Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis,' Ultrasound in Medicine and Biology, vol. 27, pp. 1493-1498, Nov 2001.
[39] A. Kelemen, G. Szekely, and G. Gerig, 'Elastic model-based segmentation of 3-D neuroradiological data sets,' Ieee Transactions on Medical Imaging, vol. 18, pp. 828-839, Oct 1999.
[40] C. P. Loizou, C. S. Pattichis, M. Pantziaris, T. Tyllis, and A. Nicolaides, 'Snakes based segmentation of the common carotid artery intima media,' Medical & Biological Engineering & Computing, vol. 45, pp. 35-49, Jan 2007.
[41] N. Paragios, 'A level set approach for shape-driven segmentation and tracking of the left ventricle,' Ieee Transactions on Medical Imaging, vol. 22, pp. 773-776, Jun 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40375-
dc.description.abstract乳癌是全世界女性最常見的癌症之一,早期發現對於乳癌的治療是非常重要的,目前在診斷方面有許多的技術,包括超音波、X-光...等等,其中以超音波對人體的傷害較小,所以超音波檢測對於乳癌的篩檢和診斷是一種常用的方法。近年來,由一些公司所開發的可攜式個人電腦之超音波成像系統能夠提供在整合系統環境上開發電腦輔助診斷或偵測的應用,在此論文中,使用由Terason t3000 公司所開發的全乳房超音波系統,使用者可進行全乳房掃瞄,並經由一時鐘式的區域儲存方式,使用者可快速取出任一部位的超音波影像進行診斷。另為協助醫師判讀,同時也提出了以模糊理論為概念對於全乳房超音波影像進行電腦輔助檢測是否有腫瘤存在。首先,由於連續超音波影像之間的差異性很不明顯,所以我們會先將數張的超音波影像疊合在一起後再做處理以節省檢測時間。接著,將疊合後的影像做多重解析度的取樣處理。由於超音波影像通常本身有雜訊,因此前處理部份使用區域模糊的方式來去除雜訊,並用S型濾波器來強化對比並提升邊界資訊。接著,全乳房超音波不同解析度的影像會分別套用模糊理論來篩檢是否有腫瘤存在。在用模糊理論做篩檢後,只有標示為腫瘤的區塊會再經由一些事先定義的腫瘤篩選條件來去除不符合腫瘤特徵的區塊。最後我們會分別針對不同解析度各自篩檢出的可疑區塊互相做比對來得到最後的檢測結果。另外,我們使用FROC curve 來評估我們系統的偵測效能。根據實驗結果,系統有91.8%的偵測敏感度而每測試案例產生1.67次的false positives。zh_TW
dc.description.abstractBreast cancer is the most frequently diagnosed cancer in women all over the world. The early detection of the breast cancer provides a better chance of proper treatment. There are many technologies for diagnosis, such as ultrasound (US) and X-ray. In general, US is the efficient method used for breast cancer detection and diagnose presently and has less injury to human body. In recent years, the portable PC-based US imaging systems developed by some companies can provide an integrated computer environment for the computer-aided diagnosis and detection applications. In this paper, an automatic tumor detection system based on the fuzzy approach using the PC-based US system Terason t3000 (Terason Ultrasound, Burlington, MA, USA) is proposed. In order to easily retrieve the US images for any regions of the breast, a clock-based storing system is proposed to store the scanned US images. A computer-aided detection (CAD) system is also included to save the physicians’ time for a huge volume of scanned US images. The multi-resolution technique is also applied in the CAD system for detecting tumors with different sizes. First, because the differences between the successive US images are unobvious generally; several US images will be overlapped together for improving the image quality and reducing the detection time. Then, the overlapped images will be resampled to three kinds of image resolutions for improving the detection accuracy. Because of the noise in the US image, some preprocessing techniques, such as smoothing filter and sigmoid filter, are used to reduce noise and enhance the object boundary. Then, the fuzzy technique is applied to detect tumors in the images with different resolutions, respectively. After the detecting tumor in the multiple resolution images, the pre-defined criteria evaluation is applied to remove the unreasonable tumors in order to reduce the false positives. Finally, the relative relationships of suspicious regions in multiple images with different resolutions can be compared to each other for obtaining the final detection results. Moreover, the free-response operative characteristics (FROC) curve is used to evaluate the detection performance of the proposed system. According to the experimental results of 60 cases, the proposed system yields a 91.8% detection sensitivity at the 1.67 false positives per case.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:46:02Z (GMT). No. of bitstreams: 1
ntu-97-R95922055-1.pdf: 2631956 bytes, checksum: bf1d39ca739d118c6dd819672a1d81fd (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i
摘 要 ii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 1
Introduction 1
Chapter 2 Background 4
2.1 Breast Ultrasound 4
2.2 The PC-based US system 5
Chapter 3 Automatic Multi-resolution Fuzzy Tumor Detection 7
3.1 Clock-based Storing Method 8
3.2 Image Pre-processing Techniques 10
3.2.1 Image Overlapping and Resampling 10
3.2.2 Image Contrast Enhancing and Non-edge Region Smoothing 11
3.3 Tumor Detection by Fuzzy Technique 12
3.3.1 Feature Parameters for Membership Function 14
3.3.2 Membership Function Generation 15
3.3.3 Fuzzifier Unit 18
3.3.4 Defuzzifier Unit 19
3.4 Tumor Region Extraction 20
3.4.1 Connected Components Labeling 21
3.4.2 Tumor Criteria 22
3.4.3 Region Comparison in Multi-resolution Images 26
4.1 Experimental Results 28
4.2 Discussion 41
Chapter 5 Conclusion and Future Works 42
Bibliography 43
dc.language.isoen
dc.subject模糊;超音波;多解析度zh_TW
dc.subjectfuzzy;ultrasound;multi-resolutionen
dc.title乳房超音波影像之多解析度模糊理論腫瘤偵測zh_TW
dc.titleMulti-Resolution Fuzzy Tumor Detection for PC-based Breast Ultrasounden
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳啟禎(Chii-Jen Chen),陳偉銘(Wei-Ming Chen)
dc.subject.keyword模糊;超音波;多解析度,zh_TW
dc.subject.keywordfuzzy;ultrasound;multi-resolution,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
2.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved