Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40364
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor舒貽忠
dc.contributor.authorJui-Hen Yenen
dc.contributor.author顏睿亨zh_TW
dc.date.accessioned2021-06-14T16:45:46Z-
dc.date.available2009-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-31
dc.identifier.citationAhluwalia, R., Lookman, T., Saxena, A., 2003. Elastic Deformation of Polycrystals.
Physical Review Letters 91, 055501. 13
Ahluwalia, R., Lookman, T., Saxena, A., 2006. Dynamic Strain Loading of Cubic
to Tetagonal Martensites. Acta Materialia 54, 2109–2120. 13
Ahluwalia, R., Lookman, T., Saxena, A., Albers, R. C., 2004. Landau Theory for
Shape Memory Polycrystals. Acta Materialia 52, 209–218. 13
Ahluwalia, R., Lookman, T., Saxena, A., Cao, W., 2005. Domain-Size Dependence
of Piezoelectric Properties of Ferroelectric. Physical Review B 72, 014112. 10
Allen, S. M., Cahn, J. W., 1977. A Microscopic Theory of Domain Wall Motion and
Its Experimental Verification in Fe-Al Alloy Domain Growth Kinetics. Journal de
Physique 38, C7–51. 9, 43
Arlt, G., 1990. Twinning in the Ferroelectric and Ferroelastic Ceramics: Stress
Relief. Journal of Materials Science 25, 2655–2666. 80
Arlt, G., Sasko, P., 1980. Domain Configuration and Equilibrium Size of Domains
in BaTiO3 Ceramics. Journal of Applied Physics 51, 4956–4960. ix, 3, 4, 22, 80
Artemev, A., Jin, Y., Khachaturyan, A. G., 2001. Three-Dimensional Phase Field
Model of Proper Martensitic Transformation. Acta Materialia 49, 1165–1177. 13,
93
Artemev, A., Jin, Y., Khachaturyan, A. G., 2002. Three-Dimensional Phase Field
Model and Simulation of Cubic→Tetragonal Martensitic Trasnformation in Polycrystals.
Philosophical Magazine A 82, 1249–1270. 13
Artemev, A., Slutsker, J., Roytburd, A. L., 2005. Phase Field Modeling of Self-
Assembling Nanostructures in Constrained Films. Acta Materialia 53, 3425–3432.
13
Artemev, A., Wang, Y., Khachaturyan, A. G., 2000. Three-Dimensional Phase Field
Model and Simulation of Martensitic Transformation in Multilayer Systems under
Applied Stresses. Acta Materialia 48, 2503–2518. 13
115
Ball, J. M., James, R. D., 1987. Fine Phase Mixtures as Minimizers of Energy.
Archive for Rational Mechanics and Analysis 100, 13–52. 11
Bassiouny, E., Ghaleb, A. F., Maugin, G. A., 1988a. Thermodynamic Relations for
Coupled Electromechanical Hysteresis Effects I. Basic Equations. International
Journal of Engineering Science 26, 1279–1295. 6
Bassiouny, E., Ghaleb, A. F., Maugin, G. A., 1988b. Thermodynamic Relations for
Coupled Electromechanical Hysteresis Effects II. Poling of Ceramics. International
Journal of Engineering Science 26, 1297–1306. 6
Bell, A. J., 2001. Phenomenologically Derived Electric Field-Temperature Phase
Diagrams and Piezoelectric Coefficients for Single Crystal Barium Titanate under
Fields along Different Axes. Journal of Applied Physics 89, 3907–3914. 10
Bhattacharya, K., 1993. Comparison of the Geometrically Nonlinear and Linear Theories
of Martensitic Transformation. Continuum Mechanics and Thermodynamics
5, 205–242. 13, 50
Bhattacharya, K., 2003. Microstructure of Martensite. Oxford University Press, Oxford.
11
Bhattacharya, K., DeSimone, A., Hane, K. F., James, R. D., Palmstrøm, C. J.,
1999. Tents and Tunnels on Martensitic Films. Materials Science and Engineering
A 273-275, 685–689. 12
Bhattacharya, K., James, R. D., 1999. A Theory of Thin Films of Martensitic Materials
with Applications to Microactuators. Journal of the Mechanics and Physics
of Solids 47, 531–576. 12, 14, 52, 53, 95, 113
Bhattacharya, K., James, R. D., 2005. The Material is the Machine. Science 307,
53–54. 11
Bhattacharya, K., Kohn, R. V., 1997. Elastic Energy Minimization and the Recoverable
Strains of Polycrystalline Shape-Memory Materials. Archive for Rational
Mechanics and Analysis 139, 99–180. 12
Bhattacharya, K., Li, J. Y., Shu, Y. C., 2008. Homogenization of Ferroelectric Polycrystals
(in manuscript). 26
Bhattacharya, K., Ravichandran, G., 2003. Ferroelectric Perovskites for Electromechanical
Actuation. Acta Materialia 51, 5941–5960. 1
Bowles, J. S., MacKenzie, J. K., 1954. The Crystallography of Martensite Transformations
I and II. Acta Metallurgica 2, 129–137, 138–147. 11
116
Burcsu, E., Ravichandran, G., Bhattacharya, K., 2000. Large Strain Electrostrictive
Actuation in Barium Titanate. Applied Physics Letters 77, 1698–1700. 75
Burcsu, E., Ravichandran, G., Bhattacharya, K., 2004. Large Electrostrictive Actuation
of Barium Titanate Single Crystals. Journal of the Mechanics and Physics
of Solids 52, 823–846. x, 5, 75, 76, 108
Cahn, J. W., 1961. On Spinodal Decomposition. Acta Metallurgica 9, 795–801. 8
Cahn, J. W., Hilliard, J. E., 1958. Free Energy of a Nonuniform System. I. Interfacial
Free Energy. J. Chem. Phys. 28, 258–267. 8
Cao, W. W., 2005. The Strain Limits on Switching. Nature Materials 4, 727–728. 6
Chen, L. Q., 2002. Phase-field Models for Microstructure Evolution. Annual Review
of Materials Research 32, 113–140. 6, 9, 43
Chen, L. Q., 2004. Continuum Scale Simulation of Engineering Materials: Fundamentals,
Microstructures, Process Applications. Wiley-VCH, Weinheim, Ch. 2,
pp. 37–56. 109
Chen, L. Q., Shen, J., 1998. Applications of Semi-Implicit Fourier-Spectral Method
to Phase Field Equations. Computer Physics Communications 108, 147–158. 9,
63
Chen, X., Fang, D. N., Hwang, K. C., 1997. Micromechanics Simulation of Ferroelectric
Polarization Switching. Acta Materialia 45, 3181–3189. 6, 7
Choi, K. J., Biegalski, M., Li, Y. L., Sharan, A., Schubert, J., Uecker, R., Reiche, P.,
Chen, Y. B., Pan, X. Q., Gopalan, V., Chen, L. Q., Schlom, D. G., Eom, C. B.,
2004. Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films. Science
306, 1005–1009. 111
Choudhury, S., Li, Y. L., C. E. Krill III, L. Q. C., 2005. Phase-Field Simulation of
Polarization Switching and Domain Evolution in Ferroelectric Polycrystals. Acta
Materialia 53, 5313–5321. 112
Choudhury, S., Li, Y. L., C. E. Krill III, L. Q. C., 2007. Phase-field Model for
Epitaxial Ferroelectric and Magnetic Nanocomposite Thin Films. Applied Physics
Letters 90, 052909. 9
Chu, Y. H., Zhan, Q., LW, L. W. M., Cruz, M. P., Yang, P. L., Pabst, G. W.,
Zavaliche, F., Yang, S. Y., Zhang, J. X., Chen, L. Q. C., Schlom, D. G., Lin,
I. N., TB, T. B. W., Ramesh, R., 2006. Nanoscale Domain Control in Multiferroic
BiFeO3 Thin Films. Advanced Materials 18, 2307–2311. 9
117
Craik, D. J., 1995. Magnetism: Principles and Applications. Wiley, West Sussex.
131
Dayal, K., Bhattacharya, K., 2007. A Real-Space Non-Local Phase-Field Model of
Ferroelectric Domain Patterns in Complex Geometries. Acta Materialia 55, 1907–
1917. 6, 9
DeSimone, A., 1993. Energy Minimizers for Large Ferromagnetic Bodies. Archive
for Rational Mechanics and Analysis 125, 99–143. 21
DeSimone, A., James, R. D., 2002. A Constrained Theory of Magnetoelasticity.
Journal of the Mechanics and Physics of Solids 50, 283–320. 26, 44
Elhadrouz, M., Zineb, T. B., Patoor, E., 2005. Constitutive Law for Ferroelectric
and Ferroelastic Single Crystals: a Micromechanical Approach. Computational
Materials Science 32, 355–359. 7
Fotinich, Y., Carman, G. P., 2000. Stresses in Piezoceramics Undergoing Polarization
Switchings. Journal of Applied Physics 88, 6715–6725. 6, 108
Fu, Y. Q., Du, H. J., Huang, W. M., Zhang, S., Hu, M., 2004. TiNi-based Thin
Films in MEMS Applications: a Review. Sensors and Actuators A 112, 395–408.
11
Fukuda, T., Saburi, T., Doi, K., Nenno, S., 1992. Nucleation and Self-
Accommodation of the R-Phase in Ti-Ni Alloys. Materials Transactions, JIM 33,
271–277. 94, 95
Fulton, C. C., Gao, H., 2001. Microstructure Modeling of Ferroelectric Fracture.
Acta Materialia 49, 2039–2054. 7
Gao, Y. F., Suo, Z., 2002. Domain Dynamics in a Ferroelastic Epilayer on a Paraelastic
Substrate. ASME - Journal of Applied Mechanics 69, 419–424. 9
Griffiths, D. J., 1999. Introduction to Electrodynamics. Prentice-Hall International,
New Jersey. 129
Haun, M. J., Furman, E., Jang, S. J., McKinstry, H. A., Cross, L. E., 1987. Thermodynamic
Theory of PbTiO3. Journal of Applied Physics 62, 3331–3338. 9
Hong, S., Colla, E. L., Kim, E., Taylor, D. V., Tagantsev, A. K., Muralt, P., No, K.,
Setter, N., 1999. High Resolution Study of Domain Nucleation and Growth During
Polarization Switching in Pb(Zr, Ti)O3 Ferroelectric Thin Film Capacitors.
Journal of Applied Physics 86, 607–613. 4
118
Hu, H. L., Chen, L. Q., 1997. Computer Simulation of 90 degrees Ferroelectric
Domain Formation in Two Dimensions. Materials Science and Engineering A -
Structural Materials Properties Microstructure and Processing 238, 182–191. 9
Hu, H. L., Chen, L. Q., 1998. Three-dimensional Computer Simulation of Ferroelectric
Domain Formation. Journal of the American Ceramic Society 81, 492–500.
9, 80, 83
Huber, J. E., 2005. Micromechanical Modelling of Ferroelectrics. Current Opinion
in Solid State and Materials Science 9, 100–106. 6
Huber, J. E., Fleck, N. A., 2001. Multi-Axial Electrical Switching of a Ferroelectric:
Theory Versus Experiment. Journal of the Mechanics and Physics of Solids 49,
785–811. 7
Huber, J. E., Fleck, N. A., Ashby, M. F., 1997. The Selection of Mechanical Actuators
Based on Performance Indices. Proceedings of the Royal Society of London.
Series A 453, 2185–2205. 1
Huber, J. E., Fleck, N. A., Landis, C. M., McMeeking, R. M., 1999. A Constitutive
Model for Ferroelectric Polycrystals. Journal of the Mechanics and Physics of
Solids 47, 1663–1697. 6, 7, 27, 108, 109
Hwang, S. C., Lynch, C. S., McMeeking, R. M., 1995. Ferroelectric/Ferroelastic
Interactions and a Polarization Switching Model. Acta Metallurgica et Materialia
43, 2073–2084. 6, 7
Jacobs, A. E., Curnoe, S. H., Desai, R. C., 2003. Simulations of Cubic-Tetragonal
Ferroelastics. Physical Review B 68, 224104. 13
James, R. D., 1986. Displacive Phase Transformations in Solids. Journal of the
Mechanics and Physics of Solids 34, 359–394. 26, 44
Jin, J., Rajan, K. K., Lim, L. C., 2006. Properties of Single Domain
Pb(Zn1/3Nb2/3)O3−(6−7)%PbTiO3 Single Crystal. Japanese Journal of Applied
Physics 45, 8744–8747. 89
Jin, Y. M., Artemev, A., Khachaturyan, A. G., 2001. Three-Dimensional Phase Field
Model of Low-Symmetry Martensitic Transformation in Polycrystal: Simulation
of ζ 2 Martensite in AuCd Alloys. Acta Materialia 49, 2309–2320. 13
Jona, F., Shirane, G., 1962. Ferroelectric Crystals. Pergamon Press, New York. 3,
69, 77
119
Kamlah, M., 2001. Ferroelectric and Ferroelastic Piezoceramics - Modeling of Electromechanical
Hysteresis Phenomena. Continuum Mechanics and Thermodynamics
13, 219–268. 6
Kamlah, M., Liskowsky, A. C., McMeeking, R. M., Balke, H., 2005. Finite Element
Simulation of a Polycrystalline Ferroelectric Based on a Multidomain Single Crystal
Switching Model. International Journal of Solids and Structures 42, 2949–2964.
6, 108
Kamlah, M., Tsakmakis, C., 1999. Phenomenological Modeling of the Non-linear
Electromechanical Coupling in Ferroelectrics. International Journal of Solids and
Structures 36, 669–695. 5
Kessler, H., Balke, H., 2001. On the Local and Average Energy Release in Polarization
Switching Phenomena. Journal of the Mechanics and Physics of Solids 49,
953–978. 6
Khachaturyan, A. G., 1983. Theory of Structural Transformations in Solids. Wiley,
New York. 8, 11
Kim, S. J., Jiang, Q., 2002. A Finite Element Model for Rate-Dependent Behavior of
Ferroelectric Ceramics. International Journal of Solids and Structures 39, 1015–
1030. 6, 108
Kim, S. J., Seelecke, S., 2007. A Rate-dependent Three-dimensional Free Energy
Model for Ferroelectric Single Crystals. International Journal of Solids and Structures
44, 1196–1209. 7
Kittel, C., 1996. Introduction to Solid State Physics, wiley Edition. Prentice-Hall
International, New York. 48
Kohn, R. V., 1991. The Relaxation of a Double-Well Energy. Continuum Mechanics
and Thermodynamics 3, 193–236. 11
Krulevitch, P., Lee, A. P., Ramsey, P. B., Trevino, J. C., Hamilton, J., Northrup,
M. A., 1996a. Thin Film Shape Memory Alloy Microactuators. Journal of Microelectromechanical
Systems 5, 270–282. 1
Krulevitch, P., Ramsey, P. B., Makowiecki, D. M., Lee, A. P., Northrup, M. A.,
Johnson, G. C., 1996b. Mixed-Sputter Deposition of Ni-Ti-Cu Shape Memory
Films. Thin Solid Films 274, 101–105. 1
Landis, C. M., 2002. Fully Coupled, Multi-Axial, Symmetric Constitutive Laws for
Polycrystalline Ferroelectric Ceramics. Journal of the Mechanics and Physics of
Solids 50, 127–152. 5
120
Landis, C. M., 2004. Non-linear Constitutive Modeling of Ferroelectrics. Current
Opinion in Solid State and Materials Science 8, 59–69. 6
Landis, C. M., McMeeking, R. M., 2001. A Self-Consistent Constitutive Model for
Switching in Polycrystalline Barium Titanate. Ferroelectrics 255, 13–34. 6, 7, 108
Levitas, V. I., Idesman, A. V., Preston, D. L., 2004. Microscale Simulation of
Martensitic Microstructure Evolution. Physical Review Letters 93, 105701. 13
Li, J. Y., Liu, D., 2004. On Ferroelectric Crystals with Engineered Domain Configurations.
Journal of the Mechanics and Physics of Solids 52, 1719–1742. 8, 10,
22, 34, 36, 44, 111
Li, L. J., Li, J. Y., Shu, Y. C., Chen, H. Z., Yen, J. H., 2008. Magnetoelastic Domains
and Magnetic Field-Induced Strains in Ferromagnetic Shape Memory Alloys by
Phase-Field Simulation. Applied Physics Letters 92, 172504. 10
Li, W. F., Weng, G. J., 2002. A Theory of Ferroelectric Hysteresis with a Superimposed
Stress. Journal of Applied Physics 91, 3806–3815. 7
Li, W. F., Weng, G. J., 2004. A Micromechanics-based Thermodynamic Model for
the Domain Switch in Ferroelectric Crystals. Acta Materialia 52, 2489–2496. 7
Li, Y. L., Choudhury, S., Liu, Z. K., Chen, L. Q., 2003. Effect of External Mechanical
Constraints on the Phase Diagram of Epitaxial PbZr1−xTixO3 Thin Films - Thermodynamic
Calculations and Phase-Field Simulations. Applied Physics Letters
83, 1608–1610. 9
Li, Y. L., Hu, S. Y., Liu, Z. K., Chen, L. Q., 2001. Phase-field Model of Domain
Structures in Ferroelectric Thin Films. Applied Physics Letters 78, 3878–3880. 9
Li, Y. L., Hu, S. Y., Liu, Z. K., Chen, L. Q., 2002a. Effect of Electrical Boundary
Conditions on Ferroelectric Domain Structures in Thin Films. Applied Physics
Letters 81, 427–429. 9
Li, Y. L., Hu, S. Y., Liu, Z. K., Chen, L. Q., 2002b. Effect of Substrate Constraint
on the Stability and Evolution of Ferroelectric Domain Structures in Thin Films.
Acta Materilia 50, 395–411. 9
Li, Z., Chan, S. K., Grimsditch, M. H., Zouboulis, E. S., 1991. The Elastic and
Electromechanical Properties of Tetragonal BaTiO3 Single Crystals. Journal of
Applied Physics 70, 7327–7332. 69, 77
121
Li, Z., Foster, C. M., Dai, X. H., Xu, X. Z., Chan, S. K., Lam, D. J., 1992.
Piezoelectrically-induced Switching of 90◦ Domains in Tetragonal BaTiO3 and
PbTiO3 Investigated by Micro-Raman Spectroscopy. Journal of Applied Physics
71, 4481–4486. 76
Little, E. A., 1955. Dynamical Behavior of Domain Walls in Barium Titanate. Physical
Review 98, 978–984. 4
Liu, D., Li, J. Y., 2003. The Enhanced and Optimal Piezoelectric Coefficients in Single
Crystalline Barium Titanate with Engineered Domain Configurations. Applied
Physics Letters 83, 1193–1195. 22, 111
Liu, D., Li, J. Y., 2004. Domain-Engineered Pb(Mg1/3Nb2/3)O3 −PbTiO3 Crystals:
Enhanced Piezoelectricity and Optimal Domain Configurations. Applied Physics
Letters 84, 3930–3932. 22, 89, 111
Liu, T., Lynch, C. S., 2003. Ferroelectric Properties of [110], [001] and [111] Poled
Relaxor Single Crystals: Measurements and Modeling. Acta Materialia 51, 407–
416. 7, 111
Liu, T., Lynch, C. S., 2006. Phase-Field Simulation of Rhombohedral and Tetragonal
Phases in Ferroelectric Single Crystals. In: Proceedings of IMECE2006. p. 14945.
10
Liu, Y., Huang, X., 2004. Substrate-Induced Stress and Transformation Characteristics
of a Deposited Ti-Ni-Cu Thin Film. Philosophical Magazine 84, 1919–1936.
114
Loge, R. E., Suo, Z., 1996. Nonequilibrium Thermodynamics of Ferroelectric Domain
Evolution. Acta Materialia 44, 3429–3438. 4
Lookman, T., Shenoy, S. R., Rasmussen, K. Ø., Saxena, A., Bishop, A. R., 2003.
Ferroelastic Dynamics and Strain Compatibility. Physical Review B 67, 024114.
13
Lu, W., Fang, D. N., Li, C. Q., Hwang, K. C., 1999. Nonlinear Electric-mechanical
Behavior and Micromechanics Modelling of Ferroelectric Domain Evolution. Acta
Materialia 47, 2913–2926. 6
Lu, W., Suo, Z., 2001. Dynamics of Nanoscale Pattern Formation of an Epitaxial
Monolayer. Journal of the Mechanics and Physics of Solids 49, 1937–1950. 9
Ma, Y. F., Li, J. Y., 2007. A Constrained Theory on Actuation Strain in Ferromagnetic
Shape Memory Alloys Induced by Domain Switching. Acta Materialia 55,
3261–3269. 26, 44
122
McMeeking, R. M., Landis, C. M., 2002. A Phenomenological Multi-Axial Constitutive
Law for Switching in Polycrystalline Ferroelectric Ceramics. International
Journal of Engineering Science 40, 1553–1577. 5
Michelitsch, T., Kreher, W. S., 1998. A Simple Model for the Nonlinear Material
Behavior of Ferroelectrics. Acta Materialia 46, 5085–5094. 7
Mitsui et al., T., 1969. Ferro- and Antiferroelectric Substances. In: Hellwege, K. H.
(Ed.), Numerical Data and Functional Relationships in Science and Technology.
Springer-Verlag, Berlin. 82
Miyazaki, S., Kimura, S., Otsuka, K., 1988. Shape-Memory Effect and Pseudoelasticity
Associated with the R-Phase Transition in Ti-50.5 at.% Ni Single Crystals.
Philosophical Magazine A 57, 467–478. 14, 92
Otsuka, K., Wayman, C. M., 1998. Shape Memory Materials. Cambridge University
Press, Cambridge. 93
Ozgul, M., Takemura, K., Trolier-Mckinstry, S., Randall, C. A., 2001. Polarization
Fatigue in Pb(Zn1/3Nb2/3)O3 − PbTiO3 Ferroelectric Single Crystals. Journal of
Applied Physics 89, 5100–5106. 89
Park, B. M., Chung, S. J., 1994. Optical, Electron Microscopic, and X-ray Topographic
Studies of Ferroic Domains in Barium Titanate Crystals Grown from
High-temperature Solution. Journal of the American Ceramic Society 77, 3193–
3201. 80
Park, B. M., Chung, S. J., Kim, H. S., Si, W., Dudley, M., 1997. Synchrotron Whitebeam
X-ray Topography of Ferroelectric Domains in a BaTiO3 Single Crystal.
Philosophical Magazine A 75, 611–620. 80
Park, S. E., Shrout, T. R., 1997. Ultrahigh Strain and Piezoelectric Behavior in
Relaxor Based Ferroelectric Single Crystals. Journal of Applied Physics 82, 1804–
1811. 89
Park, S. E., Wada, S., Cross, L. E., Shrout, T. R., 1999. Crystallographically Engineered
BaTiO3 Single Crystals for High-performance Piezoelectrics. Journal of
Applied Physics 86, 2746–2750. 111
Rasmussen, K. Ø., Lookman, T., Saxena, A., Bishop, A. R., Albers, R. C., Shenoy,
S. R., 2001. Three-Dimensional Elastic Compatibility and Varieties of Twins in
Martensites. Physical Review Letters 87, 055704. 13
123
Ricote, J., Whatmore, R. W., Barber, D. J., 2000. Studies of the Ferroelectric
Domain Configuration and Polarization of Rhombohedral PZT Ceramics. Journal
of Physics: Condensed Matter 12, 323–337. 4, 82, 87
R¨odel, J., Kreher, W. S., 2000. Self-consistent Modelling of Non-linear Effective
Properties of Polycrystalline Ferroelectric Ceramics. Computational Materials Science
19, 123–132. 7
R¨odel, J., Kreher, W. S., 2003. Modelling Linear and Nonlinear Behavior of Polycrystalline
Ferroelectric Ceramics. Journal of the European Ceramic Society 23,
2297–2306. 7
Roitburd, A. L., 1978. Martensitic Transformation as a Typical Phase Transformation
in Solids. Solid State Physics 33, 317–390, academic Press. 11
Salje, E. K. H., 1990. Phase Transitions in Ferroelastic and Co-Elastic Crystals.
Cambridge University Press, Cambridge. 13
Schlom, D. G., LQ, L. Q. C., Eom, C. B., Rabe, K. M., Streiffer, S. K., Triscone,
J. M., 2007. Strain Tuning of Ferroelectric Thin Films. Annual Review ofMaterials
Research 37, 589–626. 9
Seelecke, S., Kim, S. J., Ball, B. L., Smith, R. C., 2005. A Rate-dependent Twodimensional
Free Energy Model for Ferroelectric Single Crystals. Continuum Mechanics
and Thermodynamics 17, 337–350. 7
Seol, D. J., Hu, S. Y., Li, Y. L., Chen, L. Q., Oh, K. H., 2002. Computer Simulation
of Martensitic Transformation in Constrained Films. Material Science Forum 408-
412, 1645–1650. 13, 114
Seol, D. J., Hu, S. Y., Li, Y. L., Chen, L. Q., Oh, K. H., 2003. Cubic to Tetragonal
Martensitic Transformation in a Thin Film Elastically Constrained by a Substrate.
Metals and Materials International 9, 221–226. 114
Shieh, J., Huber, J. E., Fleck, N. A., 2003. An Evaluation of Switching Criteria for
Ferroelectrics under Stress and Electric Field. Acta Materialia 51, 6123–6137. 7
Shieh, J., Huber, J. E., Fleck, N. A., Ashby, M. F., 2001. The Selection of Sensors.
Progress in Materials Science 46, 461–504. 1
Shieh, J., Yeh, J. H., Shu, Y. C., Yen, J. H., 2007. Operation of Multiple 90 Degree
Switching Systems in Barium Titanate Single Crystals under Electromechanical
Loading. Applied Physics Letters 91, 062901. 2, 8
124
Shilo, D., Burcsu, E., Ravichandran, G., Bhattacharya, K., 2007. A Model for Large
Electrostrictive Actuation in Ferroelectric Single Crystals. International Journal
of Solids and Structures 44, 2053–2065. 5, 109
Shin, M. C., Chung, S. J., Lee, S. G., Feigelson, R. S., 2004. Growth and Observation
of Domain Structure of Lead Magnesium Niboate-Lead Titanate Single Crystals.
Journal of Crystal Growth 263, 412–420. 89
Shu, Y. C., 2000. Heterogeneous Thin Films of Martensitic Materials. Archive for
Rational Mechanics and Analysis 153, 39–90. 12, 53
Shu, Y. C., 2002a. Shape-Memory Micropumps. Materials Transactions 43, 1037–
1044. 12, 98
Shu, Y. C., 2002b. Strain Relaxation in an Alloy Film with a Rough Free Surface.
Journal of Elasticity 66, 63–92. 53
Shu, Y. C., Bhattacharya, K., 1998. The Influence of Texture on the Shape-Memory
Effect in Polycrystals. Acta Materialia 46, 5457–5473. 12, 49
Shu, Y. C., Bhattacharya, K., 2001. Domain Patterns and Macroscopic Behavior of
Ferroelectric Materials. Philosophical Magazine B 81, 2021–2054. 5, 18, 22, 23,
31, 70
Shu, Y. C., Lin, M. P., Wu, K. C., 2004. Micromagnetic Modeling of Magnetostrictive
Materials under Intrinsic Stress. Mechanics of Materials 36, 975–997. 18, 20,
46, 112
Shu, Y. C., Yen, J. H., 2007. Pattern Formation in Martensitic Thin Films. Applied
Physics Letters 91, 021908. 2, 6, 13, 37, 50
Shu, Y. C., Yen, J. H., 2008. Multivariant Model of Martensitic Microstructure in
Thin Films. Acta Materialia , doi:10.1016/j.actamat.2008.04.018. 2, 13
Shu, Y. C., Yen, J. H., Chen, H. Z., Li, J. Y., Li, L. J., 2008. Constrained Modeling
of Domain Patterns in Rhombohedral Ferroelectrics. Applied Physics Letters 92,
052909. 2, 6, 10, 37, 78, 82, 90
Shu, Y. C., Yen, J. H., Shieh, J., Yeh, J. H., 2007. Effect of Depolarization and
Coercivity on Actuation Strains due to Domain Switching in Barium Titanate.
Applied Physics Letters 90, 172902. 2, 8, 44
Slutsker, J., Artemev, A., Roytburd, A. L., 2002. Morphological Transitions of Elastic
Domain Structures in Constrained Layers. Journal of Applied Physics 91,
9049–9058. 13
125
Slutsker, J., Artemev, A., Roytburd, A. L., 2004. Engineering of Elastic Domain
Structures in a Constrained Layer. Acta Materialia 52, 1731–1742. 13
Smith, R. C., Seelecke, S., Dapino, M. J., Ounaies, Z., 2005. A Unified Framework
for Modeling Hysteresis in Ferroic Materials. Journal of the Mechanics and Physics
of Solids 54, 46–85. 7
Streiffer, S. K., Parker, C. B., Romanov, A. E., Lefevre, M. J., Zhao, L., Speck,
J. S., Pompe, W., Foster, C. M., Bai, G. R., 1998. Domain Patterns in Epitaxial
Rhombohedral Ferroelectric Films. Geometry and Experiments. Journal of
Applied Physics 83, 2742–2753. 94
Sun, C. T., Achuthan, A., 2004. Domain-Switching Criteria for Ferroelectric Materials
Subjected to Electrical and Mechanical Loads. Journal of the American
Ceramic Society 87, 395–400. 6
Tomozawa, M., Kim, H. Y., Miyazaki, S., 2006. Microactuators Using R-phase
Transformation of Sputter-deposited Ti-47.3Ni Shape Memory Alloy Thin Films.
Journal of Intelligent Material Systems and Structures 17, 1049–1058. 2
Uchino, K., 1998. Materials Issues in Design and Performance of Piezoelectric Actuators:
An Overview. Acta Materialia 46, 3745–3753. 1
Wada, S., Suzuki, S., Noma, T., Suzuki, T., Osada, M., Kakihana, M., Park, S. E.,
Cross, L. E., Shrout, T. R., 1999. Enhanced Piezoelectric Property of Barium Titanate
Single Crystals with Engineered Domain Configurations. Japanese Journal
of Applied Physics 38, 5505–5511. 4, 22, 111
Wang, J., Li, Y., Chen, L. Q., Zhang, T. Y., 2005a. The Effect of Mechanical strains
on the Ferroelectric and Dielectric Properties of a Model Single Crystal-Phase
Field Simulation. Acta Materialia 53, 2495–2507. 9
Wang, J., Li, Y. L., Chen, L. Q., Zhang, T. Y., 2005b. The Effect of Mechanical
Strains on the Ferroelectric and Dielectric Properties of a Model Single
Crystal−Phase Field Simulation. Acta Materilia 53, 2495–2507. 9
Wang, J., Shi, S. Q., Chen, L. Q., Li, Y., Zhang, T. Y., 2004. Phase Field Simulations
of Ferroelectric/Ferroelastic Polarization Switching. Acta Materilia 52, 749–764.
9
Wang, Y., Khachaturyan, A. G., 1997. Three-Dimensional Field Model and Computer
Modeling of Martensitic Transformations. Acta Materialia 45, 759–773. 13
Wechsler, M., Lieberman, D., Read, T., 1953. On the Theory of the Formation of
Martensite. Trans. AIME 197, 1503–1515. 11
126
Wu, S. K., Lin, H. C., 2000. Recent Development of TiNi-based Shape Memory
Alloys in Taiwan. Materials Chemistry and Physics 64, 81–92. 1, 11
Yamamoto, T., Okino, H., Oka, H., 2004. Phenomenological and Structural Studies
of the Morphotropic Phase Boundary in Lead Zinc Niobate (PZN)-Lead Titanate
(PT). In: 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency
Control Joint 50th Anniversary Conference. pp. 209–212. 89
Yen, J. H., Shu, Y. C., Shieh, J., Yeh, J. H., 2008. A Study of Electromechanical
Switching in Ferroelectric Single Crystals. Journal of the Mechanics and Physics
of Solids, 56, 2117–2135. 2, 25
Zhang, R., Jiang, B., Jiang, W., Cao, W., 2003. Complete Set of Properties of
0.92Pb(Zn1/3Nb2/3)O3 − 0.08PbTiO3 Single Crystal with Engineered Domains.
Materials Letters 57, 1305–1308. 111
Zhang, R., Jiang, B., Jiang, W., Cao, W., 2006a. Complete Set of Elastic, Dielectric,
and Piezoelectric Coefficients of 0.93Pb(Zn1/3Nb2/3)O3 − 0.07PbTiO3 Single
Crystal Poled along [011]. Applied Physics Letters 89, 242908. 111
Zhang, W., Bhattacharya, K., 2005a. A Computational Model of Ferroelectric Domains.
Part I: Model Formulation and Domain Switching. Acta Materialia 53,
185–198. 6, 9
Zhang, W., Bhattacharya, K., 2005b. A Computational Model of Ferroelectric Domains.
Part II: Grain Boundaries and Defect Pinning. Acta Materialia 53, 199–
209. 6, 9, 112
Zhang, Z. K., Fang, D. N., Soh, A. K., 2006b. A New Criterion for Domain-switching
in Ferroelectric Materials. Mechanics of Materials 38, 25–32. 6
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40364-
dc.description.abstract「鐵電材料」與「形狀記憶合金」可說是當今智能材料中最主流的兩大類。這些材料由於具有能量轉換的性質,以及在外界刺激下可引發巨大非線性、可回復之物理反應等特點,成為許多先進設備與儀器的基本元件。然而,這些獨特的性質,實際上源自於這些材料內部秩序性的微結構排列與演化所導致的宏觀反應。因此,瞭解這些材料之微觀結構,以及其導致宏觀行為的介觀機制,是有效利用這些材料的基本工作。本論文即是從材料的能量描述出發,建立鐵電材料和形狀記憶合金之介觀與微觀材料模型。
本文發展的第一個模型架構,是一套用來探討鐵電材料晶域轉換導致宏觀致動應變的介觀力電耦合模型。此模型首創之特點,在於引入「多階層狀結構」的觀念來描述鐵電材料晶域之排列,這使得所有晶域彼此間滿足力電諧和條件,也因此提供了極化向量轉換之最低能量路徑。另一特點為藉由此多階層狀結構對晶域壁移動之描述,可清楚區分不同極化向量翻轉所對應之頑強電場,如 90° 與 180° 頑強電場。利用此模型架構,我們模擬鐵電材料在力電耦合作用下引發致動應變的行為。模擬結果得到之致動應變量與實驗量測有很好的一致性。此外,透過此模型,我們提出一個新的觀點:「消極化能」對於力電耦合作用引發的致動應變量,有不可忽略的影響。
接著,我們建立可模擬鐵電材料微結構排列與演化的「新式相場模型」。藉由能量描述,穩態之鐵電微結構乃決定於系統總能量的最低狀態。系統在降低個別能量項的過程中,會引發使微結構聚結化、細微化、選擇與校列等相互抗衡的驅動力,因此最終穩定狀態為能量間競爭與妥協的自然結果。啟發於上述之多階層
狀結構,本文建立的新式相場法引用一組新的場變數來表示鐵電兄弟晶。利用這組新的場變數,系統的能量基態結構便可以用解析的數學式描寫,且其數學形式可適用於所有的晶體對稱性。我們用這套新式相場法模擬鐵電材料在四方晶系與菱形晶系兩種常見固態相中所構成的穩定微結構。模擬結果呈現各種滿足宏觀邊界條件的自主性調適之微結構圖樣,以及一個在外加電場操控下產生之晶域組態。這些模擬所得到的微結構,與諸多實驗的觀察相當符合。
本文最後一部份的研究工作,則是在建立適用於麻田散鐵材料微結構模擬的新式相場法。此相場法與上述鐵電材料之架構相同,唯略去電學的因素。我們應用此模型進行三方晶系之「薄膜」麻田散鐵材料微結構模擬。模擬結果呈現許多與實驗觀察相符的微結構圖樣。此外,針對常見之圓頂狀和隧道狀致動器,我們也探討薄膜之晶格方向以及微結構圖樣,對這些設計所能獲得之應變量的影響。最後,觀察微結構演化的過程,我們發現晶域間始終滿足應變諧和條件,這個現象除了證實滿足應變諧和條件之介面移動是一條最低能量的演化路徑外,也提供了大應變致動器設計上的一個參考準則。
zh_TW
dc.description.abstractFerroelectrics and shape-memory alloys are two major families of smart materials, and are both key units for several advanced devices. Their unique features and nonlinear behaviors, however, originate from the arrangements and evolution of the underlying microstructures. Therefore, to take full advantage of these materials, it is essential to study the microscopic and mesoscopic physics of them. This thesis addresses these topics via developing novel models based on energy arguments and verifying them.
A mesoscopic electromechanical switching model is developed to investigate the switching behavior of ferroelectric single crystals. The theoretical model makes an assumption that switching follows the evolution of a particular domain pattern. The construction of this pattern is achieved using multirank laminates, which guarantee that domains remain compatible during evolution. This in turn provides a low-energy path for the overall switching. It offers an advantage of specifying different types of domain wall movements, leading to a distinction for the switching types.
The required input parameters, 180◦ and 90◦ coercive fields, are taken from measured data. Simulation results show good agreement with the measured strains in experiments. It is found that depolarization has a non-trivial influence on attainable actuation strains.
Next, to investigate the formation and evolution of microscopic domain patterns in ferroelectrics, a non-conventional phase-field model is developed through competing energetics to describe the coarsening, refinement, selection, and alignment of microstructure. It employs a set of field variables motivated by multirank laminates to represent energy-minimizing domain configurations. As a result, the energy-well structure can be expressed explicitly in a unified fashion. The framework is applied to domain simulation in both the tetragonal and rhombohedral phases assuming that polarization is close to one of their ground states. Several electromechanical self-accommodation patterns and an engineered domain configuration are predicted and found in good agreement with those observed in experiment.
Finally, we build a phase-field model for martensitic materials. The main feature of this novel model is also built on the ideas of multirank lamination. The model is applied to the investigation of pattern formation in martensitic thin films with trigonal symmetry. Various intriguing and fascinating patterns are predicted and are found in good agreement with those observed in experiments. In addition, the film orientations and patterns to achieve large actuation strains are suggested for dome-shaped and tunnel-shaped microactuators. It is found that the resulting
morphologies evolve with coherent interfaces under various loading conditions. This suggests that compatible walls provide a low-energy path during evolution, and the
understanding of them leads to novel strategies of large strain actuation.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:45:46Z (GMT). No. of bitstreams: 1
ntu-97-D92543007-1.pdf: 3201047 bytes, checksum: d561aafb2d6400261805cf9388d25055 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAcknowledgements (Chinese) i
Abstract (Chinese) iii
Abstract v
Contents vii
List of Figures ix
List of Tables xv
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Ferroelectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Electromechanical Switching in Ferroelectric Crystals . . . . . 5
1.2.2 Phase-Field Modeling of Ferroelectric Domain Patterns . . . . 8
1.3 Martensites and Martensitic Thin Films . . . . . . . . . . . . . . . . 10
1.3.1 Phase-Field Modeling of Martensitic Microstructures . . . . . 13
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Framework 17
2.1 Kinematics and Ferroelectric Phase Transformations . . . . . . . . . . 17
2.2 Electroelastic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Multirank Laminated Domain Pattern . . . . . . . . . . . . . . . . . 21
2.4 Electromechanical Switching Model . . . . . . . . . . . . . . . . . . . 25
2.4.1 Domain Switching . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Flat-Plate Configuration . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Other Configurations . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Phase-Field Model for Ferroelectrics . . . . . . . . . . . . . . . . . . . 35
2.5.1 Modified Free Energy Functional . . . . . . . . . . . . . . . . 36
2.5.2 Thermodynamic Driving Force and Evolution of Ferroelectric
Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
vii
2.5.3 Constrained Model . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Phase-Field Model for Martensites . . . . . . . . . . . . . . . . . . . 48
2.6.1 Transformation Strain, Free Energy and Microstructure Evolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6.2 Thin-Film Limit . . . . . . . . . . . . . . . . . . . . . . . . . 51
3 Numerical Implementations 57
3.1 Implementation for Electromechanical Switching . . . . . . . . . . . . 57
3.2 Implementation for Phase-Field Model . . . . . . . . . . . . . . . . . 62
4 Results and Discussions 67
4.1 Electromechanical Switching in Flat-Plate Configuration . . . . . . . 67
4.1.1 Experiment under Flat-Plate Configuration . . . . . . . . . . 67
4.1.2 Depolarization Effect . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.3 Comparison with Experiments . . . . . . . . . . . . . . . . . . 75
4.2 Phase-Field Simulation of Ferroelectrics . . . . . . . . . . . . . . . . . 77
4.2.1 Ferroelectric Single Crystal in the Tetragonal Phase . . . . . . 77
4.2.2 Ferroelectric Single Crystal in the Rhombohedral Phase . . . . 82
4.3 Phase-Field Simulation of Martensitic Thin Films . . . . . . . . . . . 92
4.3.1 (001) Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.2 (110) Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.3 (111) Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.4 Design of Large Strain Microactuators . . . . . . . . . . . . . 98
5 Conclusions and Future Works 107
5.1 Electromechanical Switching Model . . . . . . . . . . . . . . . . . . . 107
5.2 Phase-Field Simulation of Ferroelectrics . . . . . . . . . . . . . . . . . 109
5.3 Phase-Field Simulation of Martensitic Thin-Films . . . . . . . . . . . 112
Bibliography 115
A Depolarization of a Uniformly Polarized Body 129
B Depolarizing Factor of a Rectangle 133
C Depolarizing Factor of a Cylinder 135
D Solution of the Stress Field 139
E Solution of the Depolarization Field 143
Curriculum Vitae 145
dc.language.isoen
dc.subject微結構形成zh_TW
dc.subject消極化能zh_TW
dc.subject麻田散鐵材料zh_TW
dc.subject薄膜zh_TW
dc.subject多階層狀結構zh_TW
dc.subject力電耦合zh_TW
dc.subject相場法模型zh_TW
dc.subject鐵電材料zh_TW
dc.subjectThin filmsen
dc.subjectFerroelectric single crystalen
dc.subjectMultirank laminationen
dc.subjectElectromechanical processesen
dc.subjectDepolarizationen
dc.subjectPhase-field modelsen
dc.subjectPattern formationen
dc.subjectMartensiteen
dc.title以多階層狀結構理論開發鐵電與麻田散鐵材料之微觀及介觀模型zh_TW
dc.titleApplication of Multirank Lamination Theory to the Modeling of Ferroelectric and Martensitic Materialsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳光鐘,劉進賢,陳東陽,馬劍清,謝宗霖
dc.subject.keyword鐵電材料,多階層狀結構,力電耦合,消極化能,相場法模型,微結構形成,麻田散鐵材料,薄膜,zh_TW
dc.subject.keywordFerroelectric single crystal,Multirank lamination,Electromechanical processes,Depolarization,Phase-field models,Pattern formation,Martensite,Thin films,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved