請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40347
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 方俊民(Jim-Min Fang) | |
dc.contributor.author | Chih-An Chen | en |
dc.contributor.author | 陳志安 | zh_TW |
dc.date.accessioned | 2021-06-14T16:45:23Z | - |
dc.date.available | 2013-08-04 | |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-01 | |
dc.identifier.citation | 1. Yang, P.; Wiser, J. L.; Peairs, J. J.; Ebright, J. N.;
Zavodni, Z. J.; Rickman, C. B.; Jaffe, G. J. Invest. Ophthalmol.Visual Sci 2005, 46, 1755–1764. Human RPE expression of cell survival factors. 2. Glotin, A.-L.; Debacq-Chainiaux, F.; Brossas, J.-Y.; Faussat, A.-M.; Treton, J.; Zubielewicz, A.; Toussaint, O.; Mascarelli, F. Free Radic. Biol. Med. 2008, 44, 1348–1361. Prematurely senescent ARPE-19 cells display features of age-related macular degeneration. 3. Sparrow, J. R.; Nakanishi, K.; Parish C. A. Invest. Ophthalmol.Visual Sci 2000, 41, 1981–1989. The lipofuscin fluorophore A2E mediates blue–light–induced damage to retinal pigmented epithelial cells. 4. Sparrow, J. R.; Zbou, J.; Ben-Sbabat, S.; Vollmer, H.; Itagaki, Y.; Nakanisbi, K. nvest. Ophthalmol.Visual Sci 2002, 43, 1222–1227. Involvement of oxidative mechanisms in blue–light–induced damage to A2E-laden RPE. 5. Winkler, B. S.; Boulton, M. E.; Gottsch J. D.; Sternberg, P. Mol Vis. 1999, 5, 32–42. Oxidative damage and age-related macular degeneration. 6. Tahara, S. Biosci. Biotechnol. Biochem. 2007, 71, 1387– 1404. A journey of twenty-five years through the ecological biochemistry of flavonoids. 7. Pietta, P.-G. J. Nat. Prod. 2000, 63, 1035-1042. Flavonoids as antioxidants. 8. Qin, S. Drug Dev. Res. 2007, 68, 213–225. Oxidative damage of retinal pigment epithelial cells and age- related macular degeneration. 9. Hanneken, A.; Lin F.-F.; Johnson, J.; Maher, P. Invest. Ophthalmol.Visual Sci 2006, 47, 3164–3177. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress–induced death. 10. Ben-Shabat, S.; Itagaki Y.; Jockusch, S.; Sparrow, J. R.; Turro, N. J.; Nakanishi, K. Angew. Chem. Int. Ed. 2002, 41, 814–817. Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. 11. Sparrow, J. R.; Vollmer-Snarr, H. R.; Zhou, J.; Jang, Y. P.; Jockusch, S.; Itagaki, Y.; Nakanishi K. J. Biol. Chem. 2003, 278, 18207–18213. A2E-epoxides damage DNA in retinal pigment epithelial cells. 12. Jang, Y.P.; Zhou, J., Nakanishi, K.; Sparrow, J.R. Photochem.Photobiol, 2005, 81,529–536. Anthocyanins protect against A2E photooxidation and membrane permeabilization in retinal pigment epithelial cells. 13. (a) Cabrita, L.; Fossen, T.; Andersen, O. M. Food Chem. 2000, 68, 101–107. Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. (b) Furtado, P.; Figueiredo, P.; Chaves das Neves, H.; Pina, F. J. Photochem. Photobiol. A, 1993, 75, 113–118. Photochemical and thermal degradation of anthocyanidins. 14. (a) Sparrow, J. R.; Parish, C. A.; Hashimoto, M.; Nakanishi, K. Invest.Ophthalmol. Vis. Sci. 1999, 40, 2988–2995. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. (b) Sparrow, J. R.; Fishkin, N.; Zhou, J.; Cai, B.; Jang, Y. P.; Krane, S.; Itagaki, Y.; Nakanishi, K. Vision Res. 2003, 43, 2983–2990. A2E, a byproduct of the visual cycle. 15. Smith, J. A.; Maloney, D. J.; Hecht, S. M.; Lannigana, D. A. Bioorg. Med. Chem. 2007, 15, 5018–5034. Structural basis for the activity of the RSK-specific inhibitor, SL0101. 16. (a) KIM, Y.-C.; JUN, M.; JEONG, W.–S.; CHUNG, S.–K. J. Food Sci. Educ 2005, 70, 575–580. Antioxidant properties of flavone C-glycosides from Atractylodes japonica leaves in human low-density lipoprotein oxidation. (b) Chen, X.; Veitch, N. C.; Houghton, P. J.; Simmonds, M. S. J. Chem. Pharm. Bull. 2003, 51, 1204– 1207. Flavone C-glycosides from Viola yedoensis MAKINO. (c) Zhao, Z.; Jin, J.; Ruan, J.; Zhu, C.; Lin, C.; Fang, W.; Cai, Y. J. Nat. Prod. 2007, 70, 1683–1686. Antioxidant flavonoid glycosides from aerial parts of the fern Abacopteris penangiana. (d) Rayyan, S.; Fossen, T.; Andersen, Ø. M.. J. Agric. Food Chem. 2005, 53, 10057- 10060. Flavone C-glycosides from leaves of Oxalis triangularis. 17. Matsumoto, T.; Hosoya, T.; Suzuki, K. Tetrahedron Lett. 1990, 31, 4629–4632. Improvement in O→C- glycoside rearrangement approach to C-aryl glycosides: use of 1-O-acetyl sugar as stable but efficient glycosyl donor. 18. Telbani, E. E.; Desoky, S. E.; Hammad, M. A.; Rahman, A. R. H.; Schmidt, R. R. Eur. J. Org. Chem. 1998, 11, 2317–2322. C-glycosides of Visnagin analogues. 19. (a) Yamauchi, T.; Watanabe, Y. ; Suzuki, K.; Matsumoto, T. Synthesis 2006, 17, 2818–2824. Facile one- pot synthesis of resorcinol bis-C-glycosides possessing two identical sugar moieties. (b) Ben, A.; Yamauchi, T.; Matsumoto, T.; Suzuki, K. Synlett 2004, 225–230. Sc(OTf) 3 as efficient catalyst for aryl C-glycoside synthesis. (c) Yamauchi, T.; Watanabe, Y. ; Suzuki, K.; Matsumoto, T. Synlett 2006, 3, 399–402. Bis-C-glycosylation of resorcinol derivatives by an O→C-glycoside rearrangement. 20. Frick, W.; Schmidt, R. R. Liebigs Ann. Chem. 1989, 565–570. Einfache synthese von C-β-D- glucopyranosylaromaten-synthese des 5,7,4’-tri-O-methyl- vitexins. 21. Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1989, 7, 833–836. Cp2ZrCl2-AgClO4: Efficient promoter for the friedel-crafts approach to C-aryl glycosides. 22. (a) Oyama, K.-i.; Kondo, T. J. Org. Chem. 2004, 69, 5240-5246. Total synthesis of flavocommelin, a component of the blue supramolecular pigment from Commelina communis, on the basis of direct 6-C-glycosylation of flavan. (b) Furuta, T.; Kimura, T.; Kondo, S.; Mihara, H.; Wakimoto, T.; Nukaya, H.; Tsuji, K.; Tanaka, K. Tetrahedron 2004, 60, 9375-9379. Concise total synthesis of flavone C-glycoside having potent anti-inflammatory activity. (c) Lee, D. Y. W.; Zhang, W.-Y.; Karnati, V. V. R. Tetrahedron Lett. 2003, 44, 6857-6859. Total synthesis of puerarin, an isoflavone C-glycoside. (d) Kumazawa, T.; Kimura, T.; Matsuba, S.; Sato, S.; Onodera, J.-i. Carbohydr. Res. 2001, 334, 183-193. Synthesis of 8-C- glucosyl-flavones. (e) Kumazawa, T.; Minatogawa, T.; Kimura, T.; Matsuba, S.; Sato, S.; Onodera, J.-i. Carbohydr. Res. 2000, 329, 507-513. An effective synthesis of isoorientin: the regioselective synthesis of a 6-C-glucosylflavone. 23. (a) Telbani, E. E. T.; Desoky, S. E.; Hammad, M. A.; Rahman, A.H. A.; Schmidt, R. R. Carbohydr. Res. 1998, 306, 463-467. Synthesis of bis(C-glycosyl)-flavonoid Precursors. (b) Mahling, J.-A.; Schmidt, R. R. Synthesis 1993, 325-328. Aryl C-glycosides from O- glycosyltrichloroacetimidates and phenol derivatives with trimethylsilyl trifluoromethanesulfonate (TMSOTf) as the catalyst. 24. (a) Sato, S.; Kumazawa, T.; Watanabe, K.-i.; Matsuba, S.; Onodera, J.-i. Carbohydr. Res. 2004, 339, 429-433. Conversion of diacetyl-C-(β-D-gluco- pyranosyl)- phloroglucinol to spiroketal compounds. (b) Matsuo, G.; Miki, Y.; Nakata, M.; Matsumura, S.; Toshima, K. J. Org. Chem. 1999, 64, 7101-7106. Total synthesis of C- glycosylangucycline, Urdamycinone B, using an unprotected sugar. 25. Ben, A.; Yamauchi, T.; Matsumoto, T.; Suzuki, K. Synlett 2004, 225-230. Sc(OTf)3 as efficient catalyst for aryl C-glycoside synthesis. 26. Czernecki, S.; Ville, G. J. Org. Chem. 1989, 54, 610- 612. Stereospecific C-glycosylation of aromatic and heterocyclic rings. 27. Kumazawa, T.; Ishida, M.; Matsuba, S.; Sato, S.; Onodera, J.-i. Carbohydr. Res. 1997, 297, 379-383. Synthesis of 1-[3,5-bis-(2,3,4,6-tetra-O-acetyl-β-D-gluco- pyranosyl)-2,4,6-trihydroxyphenyl]ethane: an intermediate of potential usefulness for synthesis of bis-C-glucosyl flavonoids. 28. (a) Sato, S.; Nojiri, T.; Onodera, J.-i. Carbohydr. Res. 2005, 340, 389-394. Studies on the synthesis of safflomin-A, a yellow pigment in safflower petals: oxidation of 3-C-β-D-glucopyranosyl-5- methylphloroacetophenone. (b) Sato, S.; Akiya, T.; Suzuki, T.; Onodera, J.-i. Carbohydr. Res. 2004, 339, 2611-2614. Environmentally friendly C-glycosylation of phloroacetophenone with unprotected D-glucose using scandium(III) trifluoromethanesulfonate in aqueous media: key compounds for the syntheses of mono- and di-C- glucosylflavonoids. 29. (a) Sato, S.; Akiya, T.; Nishizawa, H.; Suzuki, T. Carbohydr. Res. 2006, 341, 964–970. Total synthesis of three naturally occurring 6,8-di-C-glycosylflavonoids: phloretin, naringenin, and apigenin bis-C-β-D-glucosides. (b) Sato, S.; Hiroe,K.; Kumazawa, T. Onodera, J.-i. Carbohydr. Res. 2006, 341, 1091-1095. Total synthesis of two isoflavone C-glycosides: genistein and orobol 8-C-β-D- glucopyranosides. 30. (a) Zaveri, N. T. Org. Lett. 2001, 3, 843-846. Synthesis of a 3,4,5-trimethoxy- benzoyl ester analogue of epigallocatechin-3-gallate (EGCG): a potential route to the natural product green tea catechin, EGCG” (b) Nay, B.; Arnaudinaud,V.; Vercauteren, J. Eur. J. Org. Chem. 2001, 2379-2384. Gram-scale production and applications of optically pure 13C-Labelled (+)-Catechin and (-)- Epicatechin. (c) Hatakeyama, K.; Ohmori, K.; Suzuki, K. Synlett 2005, 8, 1311-1315. Synthesis of (±)- Lotthanongine, a novel natural product with a flavan– indole hybrid structure. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40347 | - |
dc.description.abstract | 視網膜色素上皮細胞層 (retinal pigment epithelium, RPE) 位於眼睛的後方,厚度只有一層,排列在布魯赫氏膜與光接受器之間。RPE功能眾多,主要有光線吸收、維生素A的儲存與運送、供給感光細胞氧氣和養份,及沉澱廢物的清除。RPE會隨著年齡的增加而死亡或游離至他處,RPE功能退化會引發一些視網膜疾病,常見的有,增殖性視網膜病變 (proliferative vitreoretinopathy), 糖尿病所引發的視網膜血管新生 (proliferative diabetic retinopathy),老年性黃斑部病變 (aged-macular degeneration, AMD)等,都與RPE細胞的機能息息相關。
石斛為蘭科植物,是重要的常用中藥,霍山石斛 (Dendrobium huoshanense) 為石斛種類中之上品,原產於中國安徽霍山等地,與靈芝、冬蟲夏草並列為中國三大珍貴靈草。根據古方與相關研究報告,石斛藥用廣泛,除了具有「清肝明目」療效,也有抗衰老、抗腫瘤、治療白內障、提高身體免疫力的功能。 從霍山石斛中分離出活性小分子—芹菜素配醣體具有「明目」療效,我們希望藉由化學合成方法來彌補霍山石斛天然物資源的缺乏,合成一系列芹菜素衍生物,搭配生物活性分析,篩選出最佳的活性分子,進而推測其藥效基團,並探討結構 | zh_TW |
dc.description.abstract | A variety of C-glycosylflavonoids are found widely distributed in the plant kingdom. Dendrobium huoshanense is a well-known traditional Chinese medicine. Apigenin 6,8-di-C-glycosides have been suggested to exist in D. huoshanense to exhibit an activity for eye protection. Because the structure of the chemical constituent and the biological mechanism were unclear, we aim to synthesize a series of apigenin 6,8-di-C-glycosides and analogues for the structure–activity relationship study.
A key reaction was carried out by using Sc(OTf)3 as the promoter to furnish the C-glycosylation on phloroacetophenone with unprotected saccharides. The key compound was further converted to mono- and di-C-glycosides of apigenin. In order to increase the diversity, different sugars (D-glucose, L-arabinose, D-xylose etc.), and phenols were used to synthesize the analogues. | en |
dc.description.provenance | Made available in DSpace on 2021-06-14T16:45:23Z (GMT). No. of bitstreams: 1 ntu-97-R95223039-1.pdf: 4534195 bytes, checksum: 6da1e525a0ee52af3b34fda41a8a7a96 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 誌謝......................................................I
中文摘要................................................III英文摘要.................................................IV 目錄......................................................V 圖目錄..................................................VII 流程目錄.................................................IX 表目錄....................................................X 簡稱用語對照表...........................................XI 第一章 緒論..............................................1 第一節 RPE 細胞的介紹....................................1 1-1.1 老年性黃斑部病變..................................1 1-1.2 自由基對RPE細胞的氧化傷害.........................3 第二節 霍山石斛..........................................4 第三節 黃酮類化合物......................................5 1-3.1 黃酮類對於RPE細胞抗氧化功能.......................8 1-3.2 黃酮類對於RPE細胞抵抗A2E光氧化作用................9 第四節...................................................11 1-4.1 類黃酮配醣體.....................................11 1-4.2 醣化作用.........................................14 第二章 結果與討論.......................................19 第一節 apigenin 6,8-di-C-glycoside合成方法探討..........19 2-1.1 逆合成分析.......................................20 2-1.2 合成apigenin 6,8-di-C-glycoside..................20 2-1.3 選擇性在apiginin的6, 8位置接上不同單醣...........22 2-1.4 改善apigenin 6,8-di-C¬-glycosides之合成..........25 第二節 Sc(OTf)3 催化做醣化反應..........................27 2-2.1 使用未保護的醣類做快速C-glycosylation.............27 2-2.2 使用未保護的醣類合成6,8-di-C-glycosyl flavones....28 2-2.3 解析6,8-di-β-C-glycosyl flavones之結構............31 第三節 Assay Result.....................................32 2-3.1 Antioxidation assay for RPE cell..................33 2-3.2 Previous antioxidation assay for RPE cell results...........................................38 第四節 結論..............................................41 第三章 實驗部分.........................................43 第四章 參考文獻.........................................77 附錄: 1H and 13C 光譜...................................85 | |
dc.language.iso | zh-TW | |
dc.title | 設計及合成類黃酮配醣體做為RPE細胞抗氧化試劑 | zh_TW |
dc.title | Synthesis of Flavonoid C-Glycosides as Antioxidants for Protection of Retinal Pigment Epithelial Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅禮強,楊文彬 | |
dc.subject.keyword | 視網膜色素上皮細胞,類黃酮,抗氧化, | zh_TW |
dc.subject.keyword | Retinal Pigment Epithelial Cells,Flavonoid,Antioxidants, | en |
dc.relation.page | 133 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 4.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。