Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40323
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈偉強(Wei-Chiang Shen)
dc.contributor.authorKuang-Hung Liuen
dc.contributor.author劉廣宏zh_TW
dc.date.accessioned2021-06-14T16:44:50Z-
dc.date.available2010-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citationAlspaugh, J. A., Davidson, R. C. and Heitman, J. (2000) Morphogenesis of Cryptococcus neoformans. Contrib Microbiol 5: 217-238.
Andrews, D.L., Egan, J.D., Mayorga, M.E., and Gold, S.E. (2000) The Ustilago maydis
ubc4 and ubc5 genes encode members of a MAP kinase cascade required for
filamentous growth. MPMI 1: 781–786.
Banuett, F. (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29: 179-208.
Banuett, F., and Herskowitz, I. (1994) Identification of fuz7, a Ustilago maydis
MEK/MAPKK homolog required for a locus-dependent and – independent steps
in the fungal life cycle. Genes Dev 8: 1367–1378.
Blumental-Perry, A., Li, W., Simchen, G. and Mitchell, A. P. (2002) Repression and activation
domains of RME1p structurally overlap, but differ in genetic requirements. Mol Biol Cell 13: 1709-1721.
Bolte, M., Steigemann, P., Braus, G. H. and Irniger, S. (2002) Inhibition of APC-mediated proteolysis by the meiosis-specific protein kinase Ime2. Proc Natl Acad Sci U S A 99: 4385-4390.
Bowdish, K. S., Yuan, H. E. and Mitchell, A. P. (1995) Positive control of yeast meiotic genes by the negative regulator UME6. Mol Cell Biol 15: 2955-2961.
Burgess, S. M., Ajimura, M. and Kleckner, N. (1999) GCN5-dependent histone H3 acetylation and RPD3-dependent histone H4 deacetylation have distinct, opposing effects on IME2 transcription, during meiosis and during vegetative growth, in budding yeast. Proc Natl Acad Sci U S A 96: 6835-6840.
Casadevall, A., Rosas, A. L. and Nosanchuk, J. D. (2000) Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol 3: 354-358.
Chang, Y. C. and Kwon-Chung, K. J. (1998) Isolation of the third capsule-associated gene, CAP60, required for virulence in Cryptococcus neoformans. Infect Immun 66: 2230-2236.
Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O. and Herskowitz, I. (1998) The transcriptional program of sporulation in budding yeast. Science 282: 699-705.
Colomina, N., Gari, E., Gallego, C., Herrero, E. and Aldea, M. (1999) G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast. Embo J 18: 320-329.
D'Souza, C. A., Alspaugh, J. A., Yue, C., Harashima, T., Cox, G. M., Perfect, J. R. and Heitman, J. (2001) Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21: 3179-3191.
Davidson, R. C., Nichols, C. B., Cox, G. M., Perfect, J. R. and Heitman, J. (2003) A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol Microbiol 49: 469-485.
Dirick, L., Goetsch, L., Ammerer, G. and Byers, B. (1998) Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae. Science 281: 1854-1857.
Doering, T. L. (2000) How does Cryptococcus get its coat? Trends Microbiol 8: 547-553.
Durrenberger, F., Wong, K., and Kronstad, J.W. (1998) Identification of a cAMP-
dependent protein kinase catalytic subunit required for virulence and
morphogenesis in Ustilago maydis. Proc Natl Acad Sci USA 95: 5684–5689
Foiani, M., Nadjar-Boger, E., Capone, R., Sagee, S., Hashimshoni, T. and Kassir, Y. (1996) A meiosis-specific protein kinase, Ime2, is required for the correct timing of DNA replication and for spore formation in yeast meiosis. Mol Gen Genet 253: 278-288.
Frenz, L. M., Johnson, A. L. and Johnston, L. H. (2001) Rme1, which controls CLN2 expression in Saccharomyces cerevisiae, is a nuclear protein that is cell cycle regulated. Mol Genet Genomics 266: 374-384.

Fu, Z., Schroeder, M. J., Shabanowitz, J., Kaldis, P., Togawa, K., Rustgi, A. K., Hunt, D. F. and Sturgill, T. W. (2005) Activation of a nuclear Cdc2-related kinase within a mitogen-activated protein kinase-like TDY motif by autophosphorylation and cyclin-dependent protein kinase-activating kinase. Mol Cell Biol 25: 6047-6064.
Garrido, E. and Perez-Martin, J. (2003) The crk1 gene encodes an Ime2-related protein that is required for morphogenesis in the plant pathogen Ustilago maydis. Mol Microbiol 47: 729-743.
Garrido, E., Voss, U., Muller, P., Castillo-Lluva, S., Kahmann, R. and Perez-Martin, J. (2004) The induction of sexual development and virulence in the smut fungus Ustilago maydis depends on Crk1, a novel MAPK protein. Genes Dev 18: 3117-3130.
Gold, S.E., Duncan, G., Barrett, K., and Kronstad, J.W. (1994) cAMP regulates
morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev 8: 2805–2816.
Guttmann-Raviv, N., Boger-Nadjar, E., Edri, I. and Kassir, Y. (2001) Cdc28 and Ime2 possess
redundant functions in promoting entry into premeiotic DNA replication in Saccharomyces cerevisiae. Genetics 159: 1547-1558.
Guttmann-Raviv, N., Martin, S. and Kassir, Y. (2002) Ime2, a meiosis-specific kinase in yeast, is required for destabilization of its transcriptional activator, Ime1. Mol Cell Biol 22: 2047-2056.
Hartmann, H.A., Kahmann, R., and Bolker, M. (1996) The pheromone response
factor coordinates filamentous growth and pathogenic development in Ustilago maydis. EMBO J 15: 1632–1641
Hayashi, M., Ohkuni, K. and Yamashita, I. (1998) Control of division arrest and entry into meiosis by extracellular alkalisation in Saccharomyces cerevisiae. Yeast 14: 905-913.
Hayashi, M., Ohkuni, K. and Yamashita, I. (1998) An extracellular meiosis-promoting factor in Saccharomyces cerevisiae. Yeast 14: 617-622.
Hoang, L. M., Maguire, J. A., Doyle, P., Fyfe, M. and Roscoe, D. L. (2004) Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997-2002): epidemiology, microbiology and histopathology. J Med Microbiol 53: 935-940.
Holt, L. J., Hutti, J. E., Cantley, L. C. and Morgan, D. O. (2007) Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol Cell 25: 689-702.
Honigberg, S. M., Conicella, C. and Espositio, R. E. (1992) Commitment to meiosis in Saccharomyces cerevisiae: involvement of the SPO14 gene. Genetics 130: 703-716.
Honigberg, S. M. and Lee, R. H. (1998) Snf1 kinase connects nutritional pathways controlling meiosis in Saccharomyces cerevisiae. Mol Cell Biol 18: 4548-4555.
Hull, C. M. and Heitman, J. (2002) Genetics of Cryptococcus neoformans. Annu Rev Genet 36: 557-615.
Idnurm, A., Reedy, J. L., Nussbaum, J. C. and Heitman, J. (2004) Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot Cell 3: 420-429.
Janbon, G., Himmelreich, U., Moyrand, F., Improvisi, L. and Dromer, F. (2001) Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol Microbiol 42: 453-467.
Kahmann, R., Basse, C., and Feldbrugge, M. (1999) Fungal-plant signalling in the
Ustilago maydis-maize pathosystem. Curr Opi Microbiol 2: 647–650.
Kahmann, R., Steinberg, G., Basse, C., Feldbrugge, M., and Kamper, J. (2002) Ustilago
maydis, the causative agaent of corn smut disease. In Fungal Pathology. Kronstad J.
W.(ed.), Dodrecht, The Netherlands: Kluwer Academic Publishers.
Kassir, Y., Granot, D. and Simchen, G. (1988) IME1, a positive regulator gene of meiosis in S.
cerevisiae. Cell 52: 853-862.
Kassir, Y. and Simchen, G. (1991) Monitoring meiosis and sporulation in Saccharomyces cerevisiae. Methods Enzymol 194: 94-110.
Kernkamp, M.F. (1939) Genetic and environmental factors affecting growth types of
Ustilago zeae. Phytopathology 29: 473–484.
Kihara, K., Nakamura, M., Akada, R. and Yamashita, I. (1991) Positive and negative elements upstream of the meiosis-specific glucoamylase gene in Saccharomyces cerevisiae. Mol Gen Genet 226: 383-392.
Kominami, K., Sakata, Y., Sakai, M. and Yamashita, I. (1993) Protein kinase activity associated with the IME2 gene product, a meiotic inducer in the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 57: 1731-1735.
Kruger, J., Loubradou, G., Regenfelder, E., Hartmann, A., and Kahmann, R. (1998)
Crosstalk between cAMP and pheromone signalling pathways in Ustilago
maydis. Mol Gen Genet 260: 193–198.
Kuenzi, M. T. and Roth, R. (1974) Timing of mitochondrial DNA synthesis during meiosis in
Saccharomyces cerevisiae. Exp Cell Res 85: 377-382.
Kultz, D. (1998) Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. J Mol Evol 46: 571-588.
Kwon-Chung, K. J. (1975) A new genus, filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67: 1197-1200.
Kwon-Chung, K. J. (1976) Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68: 821-833.
Kwon-Chung, K. J. and Rhodes, J. C. (1986) Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun 51: 218-223.
Lian, T., Simmer, M. I., D'Souza, C. A., Steen, B. R., Zuyderduyn, S. D., Jones, S. J., Marra, M. A. and Kronstad, J. W. (2005) Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 55: 1452-1472.
Lin, X., Hull, C. M. and Heitman, J. (2005) Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434: 1017-1021.
Lu, Y. K., Sun, K. H. and Shen, W. C. (2005) Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol Microbiol 56: 480-491.
Malathi, K., Xiao, Y. and Mitchell, A. P. (1997) Interaction of yeast repressor-activator protein Ume6p with glycogen synthase kinase 3 homolog Rim11p. Mol Cell Biol 17: 7230-7236.
Malathi, K., Xiao, Y. and Mitchell, A. P. (1999) Catalytic roles of yeast GSK3beta/shaggy homolog Rim11p in meiotic activation. Genetics 153: 1145-1152.
Mandel, S., Robzyk, K. and Kassir, Y. (1994) IME1 gene encodes a transcription factor which is required to induce meiosis in Saccharomyces cerevisiae. Dev Genet 15: 139-147.
Mayorga, M.E., and Gold, S.E. (1999) A MAP kinase encoded by the ubc3 gene of
Ustilago maydis is required for filamentous growth and full virulence. Mol
Microbiol 34: 485–497
Miller, J. J. (1964) A Comparison of the Effects of Several Nutrients and Inhibitors on Yeast Meiosis and Mitosis. Exp Cell Res 33: 46-49.
Mizuno, T., Nakazawa, N., Remgsamrarn, P., Kunoh, T., Oshima, Y. and Harashima, S. (1998) The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae. Curr Genet 33: 239-247.
Moens, P. B., Mowat, M., Esposito, M. S. and Esposito, R. E. (1977) Meiosis in a temperature-sensitive DNA-synthesis mutant and in an apomictic yeast strain (Saccharomyces cerevisiae). Philos Trans R Soc Lond B Biol Sci 277: 351-358.
Moens, P. B. and Rapport, E. (1971) Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J Cell Biol 50: 344-361.
Moore, M., Shin, M. E., Bruning, A., Schindler, K., Vershon, A. and Winter, E. (2007) Arg-Pro-X-Ser/Thr is a consensus phosphoacceptor sequence for the meiosis-specific Ime2 protein kinase in Saccharomyces cerevisiae. Biochemistry 46: 271-278.
Muller, P., Aichinger, C., Feldbrugge, M., and Kahmann, R. (1999) The MAP kinase
kpp2 regulates mating and pathogenic development in Ustilago maydis. Mol
Microbiol 34: 1007–1017.
Munder, T., Mink, M. and Kuntzel, H. (1988) Domains of the Saccharomyces cerevisiae
CDC25 gene controlling mitosis and meiosis. Mol Gen Genet 214: 271-277.
Olempska-Beer, Z. and Freese, E. (1987) Initiation of meiosis and sporulation in Saccharomyces cerevisiae does not require a decrease in cyclic AMP. Mol Cell Biol 7: 2141-2147.
Rapport, E. (1971) Some fine structure features of meiosis in the yeast Saccharomyces cerevisiae. Can J Genet Cytol 13: 55-62.
Rubin-Bejerano, I., Mandel, S., Robzyk, K. and Kassir, Y. (1996) Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Mol Cell Biol 16: 2518-2526.
Rubin-Bejerano, I., Mandel, S., Robzyk, K. and Kassir, Y. (1996) Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Mol Cell Biol 16: 2518-2526.


Rubin-Bejerano, I., Sagee, S., Friedman, O., Pnueli, L. and Kassir, Y. (2004) The in vivo activity of Ime1, the key transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae, is inhibited by the cyclic AMP/protein kinase A signal pathway through the glycogen synthase kinase 3-beta homolog Rim11. Mol Cell Biol 24: 6967-6979.
Ruiz-Herrera, J., Leon, C.G., Guevara-Olvera, L., and Carabez-Trejo, A. (1995) Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis. Microbiology 14:695–703.
Sagee, S., Sherman, A., Shenhar, G., Robzyk, K., Ben-Doy, N., Simchen, G. and Kassir, Y. (1998) Multiple and distinct activation and repression sequences mediate the regulated transcription of IME1, a transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 18: 1985-1995.
Sari, F., Heinrich, M., Meyer, W., Braus, G. H. and Irniger, S. (2008) The C-terminal region of the meiosis-specific protein kinase Ime2 mediates protein instability and is required for normal spore formation in budding yeast. J Mol Biol 378: 31-43.
Sclafani, R. A., Patterson, M., Rosamond, J. and Fangman, W. L. (1988) Differential regulation of the yeast CDC7 gene during mitosis and meiosis. Mol Cell Biol 8: 293-300.
Shefer-Vaida, M., Sherman, A., Ashkenazi, T., Robzyk, K. and Kassir, Y. (1995) Positive and negative feedback loops affect the transcription of IME1, a positive regulator of meiosis in Saccharomyces cerevisiae. Dev Genet 16: 219-228.
Sherman, A., Shefer, M., Sagee, S. and Kassir, Y. (1993) Post-transcriptional regulation of IME1 determines initiation of meiosis in Saccharomyces cerevisiae. Mol Gen Genet 237: 375-384.
Shilo, V., Simchen, G. and Shilo, B. (1978) Initiation of meiosis in cell cycle initiation mutants of Saccharomyces cerevisiae. Exp Cell Res 112: 241-248.
Shinkai, Y., Satoh, H., Takeda, N., Fukuda, M., Chiba, E., Kato, T., Kuramochi, T. and Araki, Y. (2002) A testicular germ cell-associated serine-threonine kinase, MAK, is dispensable for sperm formation. Mol Cell Biol 22: 3276-3280.
Simchen, G. and Kassir, Y. (1989) Genetic regulation of differentiation towards meiosis in the yeast Saccharomyces cerevisiae. Genome 31: 95-99.
Smith, E. F. and Townsend, C. O. (1907) A Plant-Tumor of Bacterial Origin. Science 25: 671-673.
Smith, H. E. and Mitchell, A. P. (1989) A transcriptional cascade governs entry into meiosis in Saccharomyces cerevisiae. Mol Cell Biol 9: 2142-2152.
Sopko, R., Raithatha, S. and Stuart, D. (2002) Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol Cell Biol 22: 7024-7040.
Speed, B. and Dunt, D. (1995) Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis 21: 28-34; discussion 35-26.
Tscharke, R. L., Lazera, M., Chang, Y. C., Wickes, B. L. and Kwon-Chung, K. J. (2003) Haploid fruiting in Cryptococcus neoformans is not mating type alpha-specific. Fungal Genet Biol 39: 230-237.
Walton, F. J., Idnurm, A. and Heitman, J. (2005) Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57: 1381-1396.
Wickes, B. L., Mayorga, M. E., Edman, U. and Edman, J. C. (1996) Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. Proc Natl Acad Sci U S A 93: 7327-7331.
Williamson, P. R. (1997) Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front Biosci 2: e99-107.
Zenvirth, D., Loidl, J., Klein, S., Arbel, A., Shemesh, R. and Simchen, G. (1997) Switching yeast from meiosis to mitosis: double-strand break repair, recombination and synaptonemal complex. Genes Cells 2: 487-498.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40323-
dc.description.abstract隱球菌(Cryptococcus neoformans),為一伺機性人類病原真菌,在分類地位上屬於擔子菌,具有酵母菌與菌絲體兩種形態。隱球菌存在MATa 與 MATα兩種交配型細胞,在氮素源缺乏的環境下,MATa 與 MATα 細胞產生接合管進行細胞融合,並產生雙核生殖菌絲,擔子柄及擔孢子完成有性生活史。本實驗室過去的研究發現,隱球菌藉由Cwc1與Cwc2兩蛋白質形成之複合體,在光照環境下,感應藍光抑制雙核生殖菌絲的生長。為了進一步瞭解藍光抑制雙核菌絲生長的機制,我們利用農桿菌轉殖系統(Agrobacterium-mediated insertional mutagenesis),針對CWC1過度表現株進行逢機突變,並篩選於持續光照環境下,表現型由雙核生殖菌絲完全被抑制回復生長雙核生殖菌絲的突變株,藉以找出與藍光調控機制有關的下游基因。其中一株回覆突變株DJ22,進一步分析發現T-DNA插入破壞隱球菌CRK1基因。啤酒酵母菌(Saccharomyces cerevisiae) IME2基因及玉米黑穗病菌(Ustilago maydis) crk1基因為隱球菌CRK1之同源基因。Ime2 是一個減數分裂專一性蛋白質,具有高度保守性之Ser/Thr激酶區與TXY雙重磷酸化位置。在我們研究中發現,crk1突變株細胞融合效率提高,產生之雙核生殖菌絲多於野生株,且其雙核菌絲、擔子柄(basidia)、擔孢子(basidiaspore)的發生皆早於野生株。過度表現CRK1則會抑制雙核生殖菌絲的形成。另一方面,crk1突變株與CRK1過度表現株皆會抑制monokaryotic fruiting菌絲的發生。由本研究結果得知,CRK1在C. neoformans有性生殖過程中,扮演一負調控因子的角色。zh_TW
dc.description.abstractCryptococcus neoformans is a heterothallic basidiomycete and grows vegetatively as yeast. Under nitrogen limitation conditions, strains of opposite mating types, MATa and MATα, produce conjugation tubes and fuse to form sexual dikaryotic filaments with clamp connections. Our previous studies demonstrated that C. neoformans Cwc1 and Cwc2 are two central photoregulators which form complex to inhibit the production of sexual filaments upon light stimulation. To reveal the detailed regulatory mechanisms, Agrobacterium-mediated insertional mutagenesis screen was conducted to identify the components interacting with or functioning downstream of the Cwc1/Cwc2 complex in the pathway. Upon light irradiation, T-DNA mutants restoring different extents of filamentation under the CWC1 overexpression background were identified. In this study, one suppressor mutant, DJ22, was characterized and T-DNA was found to integrate at the C. neoformans CRK1 gene, a homologue of Saccharomyces cerevisiae IME2 and Ustilago maydis crk1. Ime2 is a meiosis-specific gene with the conserved Ser/Thr kinase domain and the significant TXY dual phosphorylation site. Consistent with the findings of other suppressors in our screen, C. neoformans Crk1 played negative role in the mating process. Mating efficiency was increased in the crk1 mutants. Dikaryotic filaments, basidia, and basidiospores produced earlier in the crosses involved the crk1 mutants. Elevation of the CRK1 mRNA level inhibited sexual differentiation. On the other hand, monokaryotic fruiting was defective both in the MATα crk1 mutant and CRK1 overexpression strains. Our study demonstrated that mating process was negatively regulated by the CRK1 gene in C. neoformans.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:44:50Z (GMT). No. of bitstreams: 1
ntu-97-R94633017-1.pdf: 1380019 bytes, checksum: 01a11f7f12fe84735329b2debaeb16b9 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要…………………………………………………………………………ii
Abstract…………………………………………………………………………iii
Chapter I Introduction………………………………………………………1
11 Meiotic program in Saccharomyces cerevisiae…………………………1
12 Signaling pathways and the crk1 gene in Ustilago maydis ………………4
13 Cryptococcus neoformans………………………………………………6
14 C neoformans blue light photoresponse…………………………………9
Chapter II Materials and Methods…………………………13
21 Strains, media and growth conditions…………………13
22 Identification of the T-DNA insertion site in the DJ22 suppressor strain14
23 Generation of the crk1 deletion mutant………………………………………14
24 Overexpression of the C neoformance CRK1 gene…………………15
25 Generation of the crk1+CRK1 reconstitution strains……………16
26 Southern blot analysis……………………………………………………17
27 Northern blot analysis………………………………………………………17
28 Cell fusion assay……………………………………………………………18
29 Melanin formation assay………………………………………………………19
210 Capsule formation assay……………………………19
211 Cell growth assay…………………………………………20
212 Slide mating…………………………………………………20
213 Phylogenetic analysis……………………………………………………21
Chapter III Results ………………………………………………22
31 Identification and characterization of the C neoformans CRK1 gene…22
32 Disruption of the C neoformans CRK1 gene…………………………………23
33 C neoformans crk1 mutants grew normally as the wild-type strains…24
34 Production of dikaryotic filaments and cell fusion efficiency were elevated in the crk1 mutants……………………………………………………………………25
35 Dikaryotic filaments, basidia, and basidiospores arouse earlier in the bilateral crk1 mutant cross……………………………………………………………………27
36 Overexpression of the CRK1 gene inhibited the filamentation in C neoformans
…………………………………………………………………………………28
37 Monokaryotic filamentation was defective in the crk1 mutant…………………29
38 Overexpression of CRK1 in the MATα cells caused growth defect in C neoformans……………………………………………………………………30
39 CRK1 played roles in regulating capsule formation in C neoformans…………31
Chapter IV Results …………………………………………33
Reference……………………………………………………………………………61
List of Figures
Fig 1 Phylogenetic analysis and amino acid sequence alignment of the conserve Ser/Thr kinase domain of Cryptococcus neoformans Crk1 and related homologues…44
Fig 2 Construction of the crk1::NAT disruption allele and Southern hybridization analysis of the wild-type, crk1, crk1+CRK1 reconstitution strains…………46
Fig 3 Deletion of CRK1 showed no growth defect…………………………………47
Fig 4 Mating filamentation was increased in the crk1 mutant………………………48
Fig 5 Cell fusion efficiency was increased in the crk1 mutant……………………49
Fig 6 Crosses involved the crk1 mutants produce dikaryotic filaments earlier than the wild-type cross………………………………………………………………51
Fig 7 The crk1 bilateral mutant cross produced basidia and basidiospores earlier than the wild-type or crk1 unilateral mutant cross………………………………53
Fig 8 Overexpression of the CRK1 gene inhibited the sexual filamentation………54
Fig 9 Monokaryotic filamentation was defective in the MATα crk1 mutant and CRK1 overexpression strains………………………………………………………55
Fig 10 Overexpression of the CRK1 gene resulted in large capsule size in the MATa but not MATα cells………………………………………………………………57
Fig 11 Overexpression of the CRK1 gene increased the melanization in the MATa but not MATα cells………………………………………………………………58
List of Tables
Table 1 Cryptococcus neoformans strains used in this study…………………59
Table 2 Oligonucleotide primers used in this study…………………………60
dc.language.isoen
dc.title隱球菌CRK1基因功能特性之分析研究zh_TW
dc.titleIdentification and characterization of the CRK1 gene in Cryptococcus neoformansen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉瑞芬(Ruey-Fen Liou),鄧述諄(Shu-Chun Teng),藍忠昱(Chung-Yu Lan),呂俊毅(Jun-Yi Leu)
dc.subject.keyword隱球菌,Cwc1,Cwc2,Agrobacterium-mediated insertional mutagenesis,CRK1,IME2,zh_TW
dc.subject.keywordCryptococcus neoformans,Cwc1,Cwc2,Agrobacterium-mediated insertional mutagenesis,CRK1,IME2,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved