Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧哲明(Che-Ming Teng)
dc.contributor.authorChieh-Yu Pengen
dc.contributor.author彭婕妤zh_TW
dc.date.accessioned2021-06-14T16:44:41Z-
dc.date.available2009-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citationArmstrong, L. C., Bjorkblom, B., Hankenson, K. D., Siadak, A. W., Stiles, C. E., Bornstein, P., 2002. Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell. 13, 1893-905.
Averous, J., Proud, C. G., 2006. When translation meets transformation: the mTOR story. Oncogene. 25, 6423-6435.
Baeuerle, P. A., Henkel, T., 1994. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 12, 141-79.
Barath, P., Fishbein, M. C., Cao, J., Berenson, J., Helfant, R. H., Forrester, J. S., 1990. Tumor necrosis factor gene expression in human vascular intimal smooth muscle cells detected by in situ hybridization. Am J Pathol. 137, 503-9.
Bastow, K. F., 2004. New acridone inhibitors of human herpes virus replication. Curr Drug Targets Infect Disord. 4, 323-30.
Bauters, C., Isner, J. M., 1997. The biology of restenosis. Prog Cardiovasc Dis. 40, 107-16.
Belknap, J. K., Grieshaber, N. A., Schwartz, P. E., Orton, E. C., Reidy, M. A., Majack, R. A., 1996. Tropoelastin gene expression in individual vascular smooth muscle cells. Relationship to DNA synthesis during vascular development and after arterial injury. Circ Res. 78, 388-94.
Belmont, P., Bosson, J., Godet, T., Tiano, M., 2007. Acridine and Acridone Derivatives, Anticancer Properties and Synthetic Methods: Where Are We Now? Anti-Cancer Agents in Medicinal Chemistry. 7, 139-169.
Bendeck, M. P., Regenass, S., Tom, W. D., Giachelli, C. M., Schwartz, S. M., Hart, C., Reidy, M. A., 1996. Differential expression of alpha 1 type VIII collagen in injured platelet-derived growth factor-BB--stimulated rat carotid arteries. Circ Res. 79, 524-31.
Bobik, A., Campbell, J. H., 1993. Vascular derived growth factors: cell biology, pathophysiology, and pharmacology. Pharmacol Rev. 45, 1-42.
Bogatkevich, G. S., Gustilo, E., Oates, J. C., Feghali-Bostwick, C., Harley, R. A., Silver, R. M., Ludwicka-Bradley, A., 2005. Distinct PKC isoforms mediate cell survival and DNA synthesis in thrombin-induced myofibroblasts. Am J Physiol Lung Cell Mol Physiol. 288, L190-201.
Bornfeldt, K. E., Raines, E. W., Graves, L. M., Skinner, M. P., Krebs, E. G., Ross, R., 1995. Platelet-derived growth factor. Distinct signal transduction pathways associated with migration versus proliferation. Ann N Y Acad Sci. 766, 416-30.
Brader, S., Eccles, S. A., 2004. Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori. 90, 2-8.
Brand, K., Page, S., Rogler, G., Bartsch, A., Brandl, R., Knuechel, R., Page, M., Kaltschmidt, C., Baeuerle, P. A., Neumeier, D., 1996. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest. 97, 1715-22.
Braun-Dullaeus, R. C., Mann, M. J., Dzau, V. J., 1998. Cell cycle progression: new therapeutic target for vascular proliferative disease. Circulation. 98, 82-9.
Brennan, P., Babbage, J. W., Burgering, B. M., Groner, B., Reif, K., Cantrell, D. A., 1997. Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity. 7, 679-89.
Butenko, I. G., Gladtchenko, S. V., Galushko, S. V., 1993. Anti-inflammatory properties and inhibition of leukotriene C4 biosynthesis in vitro by flavonoid baicalein from Scutellaria baicalensis georgy roots. Agents Actions. 39 Spec No, C49-51.
Caunt, M., Hu, L., Tang, T., Brooks, P. C., Ibrahim, S., Karpatkin, S., 2006. Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res. 66, 4125-32.
Caunt, M., Huang, Y. Q., Brooks, P. C., Karpatkin, S., 2003. Thrombin induces neoangiogenesis in the chick chorioallantoic membrane. J Thromb Haemost. 1, 2097-102.
Chang, W. H., Chen, C. H., Lu, F. J., 2002. Different effects of baicalein, baicalin and wogonin on mitochondrial function, glutathione content and cell cycle progression in human hepatoma cell lines. Planta Med. 68, 128-32.
Chao, J. I., Su, W. C., Liu, H. F., 2007. Baicalein induces cancer cell death and proliferation retardation by the inhibition of CDC2 kinase and survivin associated with opposite role of p38 mitogen-activated protein kinase and AKT. Mol Cancer Ther. 6, 3039-48.
Chen, S., Ruan, Q., Bedner, E., Deptala, A., Wang, X., Hsieh, T. C., Traganos, F., Darzynkiewicz, Z., 2001. Effects of the flavonoid baicalin and its metabolite baicalein on androgen receptor expression, cell cycle progression and apoptosis of prostate cancer cell lines. Cell Prolif. 34, 293-304.
Clinton, S. K., Underwood, R., Hayes, L., Sherman, M. L., Kufe, D. W., Libby, P., 1992. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol. 140, 301-16.
Clowes, A. W., Reidy, M. A., Clowes, M. M., 1983. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest. 49, 327-33.
Clowes, A. W., Schwartz, S. M., 1985. Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ Res. 56, 139-45.
Coughlin, S. R., 1999. How the protease thrombin talks to cells. Proc Natl Acad Sci U S A. 96, 11023-7.
Coughlin, S. R., 2000. Thrombin signalling and protease-activated receptors. Nature. 407, 258-64.
Cross, M. J., Claesson-Welsh, L., 2001. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 22, 201-7.
Dandre, F., Owens, G. K., 2004. Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. Am J Physiol Heart Circ Physiol. 286, H2042-51.
Davis, J. M., Navolanic, P. M., Weinstein-Oppenheimer, C. R., Steelman, L. S., Hu, W., Konopleva, M., Blagosklonny, M. V., McCubrey, J. A., 2003. Raf-1 and Bcl-2 Induce Distinct and Common Pathways That Contribute to Breast Cancer Drug Resistance. Clin Cancer Res. 9, 1161-1170.
De Benedetti, A., Graff, J. R., 2004. eIF-4E expression and its role in malignancies and metastases. Oncogene. 23, 3189-99.
Dell'Era, P., Belleri, M., Stabile, H., Massardi, M. L., Ribatti, D., Presta, M., 2001. Paracrine and autocrine effects of fibroblast growth factor-4 in endothelial cells. Oncogene. 20, 2655-63.
Deng, X., Ruvolo, P., Carr, B., May, W. S., Jr., 2000. Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc Natl Acad Sci U S A. 97, 1578-83.
Dethlefsen, S. M., Shepro, D., D'Amore, P. A., 1994. Arachidonic acid metabolites in bFGF-, PDGF-, and serum-stimulated vascular cell growth. Exp Cell Res. 212, 262-73.
Digtyar, A. V., Pozdnyakova, N. V., Feldman, N. B., Lutsenko, S. V., Severin, S. E., 2007. Endostatin: current concepts about its biological role and mechanisms of action. Biochemistry (Mosc). 72, 235-46.
Douglas, J. S., Jr., 2007. Pharmacologic approaches to restenosis prevention. Am J Cardiol. 100, 10K-6K.
Downward, J., 2004. PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol. 15, 177-82.
Dummler, B., Hemmings, B. A., 2007. Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans. 35, 231-5.
Ebbinghaus, S., Hussain, M., Tannir, N., Gordon, M., Desai, A. A., Knight, R. A., Humerickhouse, R. A., Qian, J., Gordon, G. B., Figlin, R., 2007. Phase 2 study of ABT-510 in patients with previously untreated advanced renal cell carcinoma. Clin Cancer Res. 13, 6689-95.
Elledge, S. J., 1996. Cell cycle checkpoints: preventing an identity crisis. Science. 274, 1664-72.
Fan, T. P., Yeh, J. C., Leung, K. W., Yue, P. Y., Wong, R. N., 2006. Angiogenesis: from plants to blood vessels. Trends Pharmacol Sci. 27, 297-309.
Ferrara, N., Gerber, H. P., LeCouter, J., 2003. The biology of VEGF and its receptors. Nat Med. 9, 669-76.
Fingar, D. C., Richardson, C. J., Tee, A. R., Cheatham, L., Tsou, C., Blenis, J., 2004. mTOR Controls Cell Cycle Progression through Its Cell Growth Effectors S6K1 and 4E-BP1/Eukaryotic Translation Initiation Factor 4E. Mol. Cell. Biol. 24, 200-216.
Fingar, D. C., Salama, S., Tsou, C., Harlow, E., Blenis, J., 2002. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472-1487.
Folkman, J., 2002. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 29, 15-8.
Folkman, J., 2007a. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 6, 273-286.
Folkman, J., 2007b. Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg. 42, 1-11.
Folkman, J., Merler, E., Abernathy, C., Williams, G., 1971. Isolation of a tumor factor responsible for angiogenesis. J Exp Med. 133, 275-88.
Fuster, V., Badimon, L., Badimon, J. J., Chesebro, J. H., 1992. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 326, 242-50.
Gerritsen, M. E., Soriano, R., Yang, S., Zlot, C., Ingle, G., Toy, K., Williams, P. M., 2003. Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by Affymetrix oligonucleotide arrays. Microcirculation. 10, 63-81.
Giachelli, C. M., Bae, N., Almeida, M., Denhardt, D. T., Alpers, C. E., Schwartz, S. M., 1993. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 92, 1686-96.
Gille, H., Downward, J., 1999. Multiple ras effector pathways contribute to G(1) cell cycle progression. J Biol Chem. 274, 22033-40.
Gingras, A.-C., Gygi, S. P., Raught, B., Polakiewicz, R. D., Abraham, R. T., Hoekstra, M. F., Aebersold, R., Sonenberg, N., 1999. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 13, 1422-1437.
Gingras, A.-C., Raught, B., Gygi, S. P., Niedzwiecka, A., Miron, M., Burley, S. K., Polakiewicz, R. D., Wyslouch-Cieszynska, A., Aebersold, R., Sonenberg, N., 2001. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 15, 2852-2864.
Graves, J. D., Campbell, J. S., Krebs, E. G., 1995. Protein Serine/Threonine Kinases of the MAPK Cascade. Ann. N. Y. Acad. Sci. 766, 320-343.
Griendling, K. K., Ushio-Fukai, M., Lassegue, B., Alexander, R. W., 1997. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension. 29, 366-73.
Grilli, M., Chiu, J. J., Lenardo, M. J., 1993. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol. 143, 1-62.
Guh, J. H., Yu, S. M., Ko, F. N., Wu, T. S., Teng, C. M., 1996. Antiproliferative effect in rat vascular smooth muscle cells by osthole, isolated from Angelica pubescens. Eur J Pharmacol. 298, 191-7.
Hanahan, D., Folkman, J., 1996. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell. 86, 353-364.
Hata, Y., Rook, S. L., Aiello, L. P., 1999. Basic fibroblast growth factor induces expression of VEGF receptor KDR through a protein kinase C and p44/p42 mitogen-activated protein kinase-dependent pathway. Diabetes. 48, 1145-1155.
Hayashi, S., Morishita, R., Matsushita, H., Nakagami, H., Taniyama, Y., Nakamura, T., Aoki, M., Yamamoto, K., Higaki, J., Ogihara, T., 2000. Cyclic AMP inhibited proliferation of human aortic vascular smooth muscle cells, accompanied by induction of p53 and p21. Hypertension. 35, 237-43.
Hedin, U., Holm, J., Hansson, G. K., 1991. Induction of tenascin in rat arterial injury. Relationship to altered smooth muscle cell phenotype. Am J Pathol. 139, 649-56.
Hillen, F., Griffioen, A. W., 2007. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 26, 489-502.
Hirano, K., Nomoto, N., Hirano, M., Momota, F., Hanada, A., Kanaide, H., 2007. Distinct Ca2+ requirement for NO production between proteinase-activated receptor 1 and 4 (PAR1 and PAR4) in vascular endothelial cells. J Pharmacol Exp Ther. 322, 668-77.
Hiscott, J., Marois, J., Garoufalis, J., D'Addario, M., Roulston, A., Kwan, I., Pepin, N., Lacoste, J., Nguyen, H., Bensi, G., et al., 1993. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol. 13, 6231-40.
Hong, T., Jin, G. B., Cho, S., Cyong, J. C., 2002. Evaluation of the anti-inflammatory effect of baicalein on dextran sulfate sodium-induced colitis in mice. Planta Med. 68, 268-71.
Hoshi, S., Goto, M., Koyama, N., Nomoto, K., Tanaka, H., 2000. Regulation of vascular smooth muscle cell proliferation by nuclear factor-kappaB and its inhibitor, I-kappaB. J Biol Chem. 275, 883-9.
Huang, H. C., Wang, H. R., Hsieh, L. M., 1994. Antiproliferative effect of baicalein, a flavonoid from a Chinese herb, on vascular smooth muscle cell. Eur J Pharmacol. 251, 91-3.
Jaffe, E. A., Nachman, R. L., Becker, C. G., Minick, C. R., 1973. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 52, 2745-56.
Javerzat, S., Auguste, P., Bikfalvi, A., 2002. The role of fibroblast growth factors in vascular development. Trends Mol Med. 8, 483-9.
Kamata, H., Hirata, H., 1999. Redox regulation of cellular signalling. Cell Signal. 11, 1-14.
Kaneko, T., Fujii, S., Matsumoto, A., Goto, D., Ishimori, N., Watano, K., Furumoto, T., Sugawara, T., Sobel, B. E., Kitabatake, A., 2002. Induction of plasminogen activator inhibitor-1 in endothelial cells by basic fibroblast growth factor and its modulation by fibric acid. Arterioscler Thromb Vasc Biol. 22, 855-60.
Kataoka, H., Hamilton, J. R., McKemy, D. D., Camerer, E., Zheng, Y. W., Cheng, A., Griffin, C., Coughlin, S. R., 2003. Protease-activated receptors 1 and 4 mediate thrombin signaling in endothelial cells. Blood. 102, 3224-31.
Kimata, M., Shichijo, M., Miura, T., Serizawa, I., Inagaki, N., Nagai, H., 2000. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin Exp Allergy. 30, 501-8.
Kimura, Y., Okuda, H., Arichi, S., 1987. Effects of baicalein on leukotriene biosynthesis and degranulation in human polymorphonuclear leukocytes. Biochim Biophys Acta. 922, 278-86.
Kocher, O., Gabbiani, F., Gabbiani, G., Reidy, M. A., Cokay, M. S., Peters, H., Huttner, I., 1991. Phenotypic features of smooth muscle cells during the evolution of experimental carotid artery intimal thickening. Biochemical and morphologic studies. Lab Invest. 65, 459-70.
Kraitzer, A., Kloog, Y., Zilberman, M., 2008. Approaches for prevention of restenosis. J Biomed Mater Res B Appl Biomater. 85, 583-603.
Kronemann, N., Nockher, W. A., Busse, R., Schini-Kerth, V. B., 1999. Growth-inhibitory effect of cyclic GMP- and cyclic AMP-dependent vasodilators on rat vascular smooth muscle cells: effect on cell cycle and cyclin expression. Br J Pharmacol. 126, 349-57.
Lafleur, M. A., Hollenberg, M. D., Atkinson, S. J., Knauper, V., Murphy, G., Edwards, D. R., 2001. Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem J. 357, 107-15.
Lai, M. Y., Hsiu, S. L., Tsai, S. Y., Hou, Y. C., Chao, P. D., 2003. Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats. J Pharm Pharmacol. 55, 205-9.
Lee, H. Z., Leung, H. W., Lai, M. Y., Wu, C. H., 2005. Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells. Anticancer Res. 25, 959-64.
Liang, J., Slingerland, J. M., 2003. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2, 339-45.
Libby, P., Schwartz, D., Brogi, E., Tanaka, H., Clinton, S. K., 1992. A cascade model for restenosis. A special case of atherosclerosis progression. Circulation. 86, III47-52.
Lowden, C. T., Bastow, K. F., 2003. Anti-Herpes Simplex Virus Activity of Substituted 1-Hydroxyacridones. J. Med. Chem. 46, 5015-5020.
Macfarlane, S. R., Seatter, M. J., Kanke, T., Hunter, G. D., Plevin, R., 2001. Proteinase-activated receptors. Pharmacol Rev. 53, 245-82.
Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P., Owens, G. K., 2001. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem. 276, 341-7.
Majesky, M. W., Daemen, M. J., Schwartz, S. M., 1990. Alpha 1-adrenergic stimulation of platelet-derived growth factor A-chain gene expression in rat aorta. J Biol Chem. 265, 1082-8.
Manderson, J. A., Mosse, P. R., Safstrom, J. A., Young, S. B., Campbell, G. R., 1989. Balloon catheter injury to rabbit carotid artery. I. Changes in smooth muscle phenotype. Arteriosclerosis. 9, 289-98.
Maragoudakis, M. E., Tsopanoglou, N. E., Andriopoulou, P., 2002. Mechanism of thrombin-induced angiogenesis. Biochem Soc Trans. 30, 173-7.
Marcotrigiano, J., Gingras, A.-C., Sonenberg, N., Burley, S. K., 1999. Cap-Dependent Translation Initiation in Eukaryotes Is Regulated by a Molecular Mimic of eIF4G. Molecular Cell. 3, 707-716.
Matsuo, H., Li, H., McGuire, A. M., Fletcher, C. M., Gingras, A. C., Sonenberg, N., Wagner, G., 1997. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat Struct Biol. 4, 717-24.
McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W. T., Chang, F., Lehmann, B., Terrian, D. M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J., Evangelisti, C., Martelli, A. M., Franklin, R. A., 2007. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1773, 1263-1284.
Merrick, W. C., 2004. Cap-dependent and cap-independent translation in eukaryotic systems. Gene. 332, 1-11.
Miano, J. M., Vlasic, N., Tota, R. R., Stemerman, M. B., 1993. Smooth muscle cell immediate-early gene and growth factor activation follows vascular injury. A putative in vivo mechanism for autocrine growth. Arterioscler Thromb. 13, 211-9.
Minich, W. B., Balasta, M. L., Goss, D. J., Rhoads, R. E., 1994. Chromatographic Resolution of In vivo Phosphorylated and Nonphosphorylated Eukaryotic Translation Initiation Factor eIF-4E: Increased Cap Affinity of the Phosphorylated Form. PNAS. 91, 7668-7672.
Moncada, S., Palmer, R. M., Higgs, E. A., 1990. Relationship between prostacyclin and nitric oxide in the thrombotic process. Thromb Res Suppl. 11, 3-13.
Morisaki, N., Kanzaki, T., Motoyama, N., Saito, Y., Yoshida, S., 1988. Cell cycle-dependent inhibition of DNA synthesis by prostaglandin I2 in cultured rabbit aortic smooth muscle cells. Atherosclerosis. 71, 165-71.
Nabel, E. G., Yang, Z. Y., Plautz, G., Forough, R., Zhan, X., Haudenschild, C. C., Maciag, T., Nabel, G. J., 1993. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature. 362, 844-6.
Natarajan, R., Gonzales, N., Lanting, L., Nadler, J., 1994. Role of the lipoxygenase pathway in angiotensin II-induced vascular smooth muscle cell hypertrophy. Hypertension. 23, I142-7.
New, D. C., Wong, Y. H., 2007. Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal. 2, 2.
New, D. C., Wu, K., Kwok, A. W., Wong, Y. H., 2007. G protein-coupled receptor-induced Akt activity in cellular proliferation and apoptosis. Febs J. 274, 6025-36.
Nicholson, K. M., Anderson, N. G., 2002. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 14, 381-95.
Nierodzik, M. L., Karpatkin, S., 2006. Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell. 10, 355-362.
Nigg, E. A., 1995. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays. 17, 471-80.
Nilsson, J., Sjolund, M., Palmberg, L., Thyberg, J., Heldin, C. H., 1985. Arterial smooth muscle cells in primary culture produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci U S A. 82, 4418-22.
Nishio, E., Watanabe, Y., 1997. Role of the lipoxygenase pathway in phenylephrine-induced vascular smooth muscle cell proliferation and migration. Eur J Pharmacol. 336, 267-73.
Nofer, J. R., Junker, R., Pulawski, E., Fobker, M., Levkau, B., von Eckardstein, A., Seedorf, U., Assmann, G., Walter, M., 2001. High density lipoproteins induce cell cycle entry in vascular smooth muscle cells via mitogen activated protein kinase-dependent pathway. Thromb Haemost. 85, 730-5.
Ollivier, V., Chabbat, J., Herbert, J. M., Hakim, J., de Prost, D., 2000. Vascular endothelial growth factor production by fibroblasts in response to factor VIIa binding to tissue factor involves thrombin and factor Xa. Arterioscler Thromb Vasc Biol. 20, 1374-81.
Ono, K., Nakane, H., Fukushima, M., Chermann, J. C., Barre-Sinoussi, F., 1989. Inhibition of reverse transcriptase activity by a flavonoid compound, 5,6,7-trihydroxyflavone. Biochem Biophys Res Commun. 160, 982-7.
Palmberg, L., Claesson, H. E., Thyberg, J., 1987. Leukotrienes stimulate initiation of DNA synthesis in cultured arterial smooth muscle cells. J Cell Sci. 88 ( Pt 2), 151-9.
Pan, S. L., Huang, Y. W., Guh, J. H., Chang, Y. L., Peng, C. Y., Teng, C. M., 2003. Esculetin inhibits Ras-mediated cell proliferation and attenuates vascular restenosis following angioplasty in rats. Biochem Pharmacol. 65, 1897-905.
Pardee, A. B., 1989. G1 events and regulation of cell proliferation. Science. 246, 603-8.
Parks, WC. and Mecham, RP. (1998) Matrix metalloproteinases. San Diego: Academic Press
Peng, C. Y., Pan, S. L., Guh, J. H., Liu, Y. N., Chang, Y. L., Kuo, S. C., Lee, F. Y., Teng, C. M., 2004. The indazole derivative YD-3 inhibits thrombin-induced vascular smooth muscle cell proliferation and attenuates intimal thickening after balloon injury. Thromb Haemost. 92, 1232-9.
Pidgeon, G. P., Kandouz, M., Meram, A., Honn, K. V., 2002. Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res. 62, 2721-7.
Presta, M., Dell'Era, P., Mitola, S., Moroni, E., Ronca, R., Rusnati, M., 2005. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine & Growth Factor Rev. 16, 159-178.
Rao, G. N., Berk, B. C., 1992. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res. 70, 593-9.
Raught, B., Gingras, A.-C., 1999. eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol. 31, 43-57.
Riessen, R., Wight, T. N., Pastore, C., Henley, C., Isner, J. M., 1996. Distribution of hyaluronan during extracellular matrix remodeling in human restenotic arteries and balloon-injured rat carotid arteries. Circulation. 93, 1141-7.
Ross, R., 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362, 801-9.
Rozengurt, E., 2007. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol. 213, 589-602.
Ruhrberg, C., 2001. Endogenous inhibitors of angiogenesis. J Cell Sci. 114, 3215-3216.
Schmelzle, T., Hall, M. N., 2000. TOR, a Central Controller of Cell Growth. Cell. 103, 253-262.
Schramek, H., Feifel, E., Healy, E., Pollack, V., 1997. Constitutively active mutant of the mitogen-activated protein kinase kinase MEK1 induces epithelial dedifferentiation and growth inhibition in madin-darby canine kidney-C7 cells. J Biol Chem. 272, 11426-33.
Seger, R., Krebs, E. G., 1995. The MAPK signaling cascade. Faseb J. 9, 726-35.
Seghezzi, G., Patel, S., Ren, C. J., Gualandris, A., Pintucci, G., Robbins, E. S., Shapiro, R. L., Galloway, A. C., Rifkin, D. B., Mignatti, P., 1998. Fibroblast Growth Factor-2 (FGF-2) Induces Vascular Endothelial Growth Factor (VEGF) Expression in the Endothelial Cells of Forming Capillaries: An Autocrine Mechanism Contributing to Angiogenesis. J. Cell Biol. 141, 1659-1673.
Sekiya, K., Okuda, H., 1982. Selective inhibition of platelet lipoxygenase by baicalein. Biochem Biophys Res Commun. 105, 1090-5.
Shao, Z. H., Vanden Hoek, T. L., Qin, Y., Becker, L. B., Schumacker, P. T., Li, C. Q., Dey, L., Barth, E., Halpern, H., Rosen, G. M., Yuan, C. S., 2002. Baicalein attenuates oxidant stress in cardiomyocytes. Am J Physiol Heart Circ Physiol. 282, H999-H1006.
Shono, T., Kanetake, H., Kanda, S., 2001. The role of mitogen-activated protein kinase activation within focal adhesions in chemotaxis toward FGF-2 by murine brain capillary endothelial cells. Exp Cell Res. 264, 275-83.
Sim, B. K., 1998. Angiostatin and endostatin: endothelial cell-specific endogenous inhibitors of angiogenesis and tumor growth. Angiogenesis. 2, 37-48.
Simantov, R., Silverstein, R. L., 2003. CD36: a critical anti-angiogenic receptor. Front Biosci. 8, s874-82.
Stambolic, V., Woodgett, J. R., 2006. Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol. 16, 461-6.
Suhardja, A., Hoffman, H., 2003. Role of growth factors and their receptors in proliferation of microvascular endothelial cells. Microsc Res Tech. 60, 70-5.
Tanaka, K., Abe, M., Sato, Y., 1999. Roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J Cancer Res. 90, 647-54.
Taubman, M. B., Berk, B. C., Izumo, S., Tsuda, T., Alexander, R. W., Nadal-Ginard, B., 1989. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem. 264, 526-30.
Thyberg, J., 1996. Differentiated properties and proliferation of arterial smooth muscle cells in culture. Int Rev Cytol. 169, 183-265.
Thyberg, J., 1998. Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histol Histopathol. 13, 871-91.
Thyberg, J., Blomgren, K., Hedin, U., Dryjski, M., 1995. Phenotypic modulation of smooth muscle cells during the formation of neointimal thickenings in the rat carotid artery after balloon injury: an electron-microscopic and stereological study. Cell Tissue Res. 281, 421-33.
Thyberg, J., Blomgren, K., Roy, J., Tran, P. K., Hedin, U., 1997a. Phenotypic modulation of smooth muscle cells after arterial injury is associated with changes in the distribution of laminin and fibronectin. J Histochem Cytochem. 45, 837-46.
Thyberg, J., Roy, J., Tran, P. K., Blomgren, K., Dumitrescu, A., Hedin, U., 1997b. Expression of caveolae on the surface of rat arterial smooth muscle cells is dependent on the phenotypic state of the cells. Lab Invest. 77, 93-101.
Tsopanoglou, N. E., Andriopoulou, P., Maragoudakis, M. E., 2002. On the mechanism of thrombin-induced angiogenesis: involvement of alphavbeta3-integrin. Am J Physiol Cell Physiol. 283, C1501-10.
Tsopanoglou, N. E., Maragoudakis, M. E., 1999. On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J Biol Chem. 274, 23969-76.
Tsopanoglou, N. E., Maragoudakis, M. E., 2004. Role of thrombin in angiogenesis and tumor progression. Semin Thromb Hemost. 30, 63-9.
Tsopanoglou, N. E., Maragoudakis, M. E., 2007. Inhibition of angiogenesis by small-molecule antagonists of protease-activated receptor-1. Semin Thromb Hemost. 33, 680-7.
Wang, H. L., Kilfeather, S. A., Martin, G. R., Page, C. P., 2000. Effects of tetrandrine on growth factor-induced DNA synthesis and proliferative response of rat pulmonary artery smooth muscle cells. Pulm Pharmacol Ther. 13, 53-60.
Wang, X., Beugnet, A., Murakami, M., Yamanaka, S., Proud, C. G., 2005. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol. 25, 2558-72.
Wang, X., Li, W., Parra, J. L., Beugnet, A., Proud, C. G., 2003. The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol. 23, 1546-57.
Webb, M. L., Taylor, D. S., Molloy, C. J., 1993. Effects of thrombin receptor activating peptide on phosphoinositide hydrolysis and protein kinase C activation in cultured rat aortic smooth muscle cells: evidence for 'tethered-ligand' activation of smooth muscle cell thrombin receptors. Biochem Pharmacol. 45, 1577-82.
Whalen, A. M., Galasinski, S. C., Shapiro, P. S., Nahreini, T. S., Ahn, N. G., 1997. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol Cell Biol. 17, 1947-58.
Wu, C. C., Huang, S. W., Hwang, T. L., Kuo, S. C., Lee, F. Y., Teng, C. M., 2000. YD-3, a novel inhibitor of protease-induced platelet activation. Br J Pharmacol. 130, 1289-96.
Wu, C. C., Hwang, T. L., Liao, C. H., Kuo, S. C., Lee, F. Y., Lee, C. Y., Teng, C. M., 2002. Selective inhibition of protease-activated receptor 4-dependent platelet activation by YD-3. Thromb Haemost. 87, 1026-33.
Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., Masaki, T., 1988. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 332, 411-5.
Zargham, R., Pepin, J., Thibault, G., 2007. alpha8beta1 Integrin is up-regulated in the neointima concomitant with late luminal loss after balloon injury. Cardiovasc Pathol. 16, 212-20.
Zhang, X., Lawler, J., 2007. Thrombospondin-based antiangiogenic therapy. Microvasc Res. 74, 90-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40316-
dc.description.abstract根據行政院衛生署公佈台灣地區九十五年度的十大死因中,惡性腫瘤排名第一,腦、心血管疾病分別佔第二及第三位,而這些疾病都與血管病變有關。血管主要由內層的內皮細胞和外側的平滑肌細胞所構成,平滑肌細胞的增生是血管再阻塞主因,也造成動脈粥狀硬化治療的瓶頸;而內皮細胞的增生,則是血管新生的必要步驟,控制血管新生對於治療發炎、風濕性關節炎甚至腫瘤的生長和轉移都有莫大的助益。因此,本論文分別探討對於血管平滑肌及血管內皮細胞增生具有抑制作用的藥物及研究其機轉。
第一部分討論中藥黃芩的主成分baicalein在體內及體外實驗中抑制血管平滑肌細胞的增生。實驗結果發現,baicalein對血清刺激造成的平滑肌細胞增生具有抑制作用,其機轉是經由抑制ERK1/2和Akt蛋白的磷酸化,影響Ras/Raf/MEK/ERK和PI-3K/Akt訊息傳遞路徑,同時也抑制IκB和DNA結合的能力。另外也減少cyclin D1的表現,使細胞週期無法進入S/G2/M期。在體內動物實驗中,口服baicalein可以有效抑制大鼠頸動脈氣球擴張損傷後的血管再阻塞。
第二部份探討acridone衍生物KS-5對血管新生促進因子bFGF引起血管內皮細胞增生的抑制作用及機轉。細胞增生 (cell proliferation) 要經過細胞生長 (cell growth) 使體積增加,和細胞分裂 (cell division) 使數目增多,過程中需要蛋白質和DNA合成。KS-5呈濃度相關性的抑制bFGF活化的ERK1/2和Akt訊息傳遞路徑並抑制細胞的DNA合成;同時KS-5也會抑制bFGF活化的mammalian target of rapamycin (mTOR),以及mTOR下游主要的因子eIF4E和p70S6K進而抑制細胞的蛋白質合成,因此有效的抑制了bFGF造成的內皮細胞增生。利用Matrigel的實驗也證明KS-5在動物體內確實具有活性,可以明顯抑制bFGF造成的血管新生。
第三部份探討indazole衍生物YD-3抑制thrombin造成血管新生的作用和機轉。YD-3在細胞實驗中可以專一性的抑制thrombin造成的內皮細胞增生,對於PAR-1和PAR-4之activating peptides (APs) 也同樣具有作用,但對PAR-2 AP造成的細胞增生則沒有明顯的抑制作用。在體內動物實驗中也發現,不論是thrombin、PAR-1或PAR-4 AP造成的血管新生,YD-3都能有效抑制,卻不影響VEGF引起的血管新生作用。YD-3的抑制作用並不是透過抑制ERK1/2的磷酸化,而是和抑制thrombin造成的細胞Flk-1表現增加有關。
經由以上實驗結果認為baicalein、KS-5和YD-3可以抑制血管平滑肌細胞或是血管內皮細胞的增生,並且也在動物體內實驗中證明具有活性,因此很有潛力繼續研究發展成為預防血管再阻塞或是血管新生相關疾病的治療藥物。
zh_TW
dc.description.abstractArterial reconstruction procedures, including balloon angioplasty, stenting and coronary artery bypass, are used to restore blood flow in atherosclerotic arteries. Restenosis of these arteries is a major limitation of the application of these procedures. Post-angioplasty restenosis results from two major processes: neointimal formation and constrictive remodelling. Neointimal formation is initiated by arterial injury with a resultant loss of contractile phenotype in tunica media, leading to VSMC migration and proliferation. In this dissertation, we study the effects of some biologically active chemical compounds on the proliferation of VSMC and endothelail cells and trying to elucidate their action mechanisms.
In the first chapter, we investigate baicalein-mediated inhibitory effects on VSMCs proliferation and intimal hyperplasia after balloon angioplasty in the rat. Baicalein significantly inhibits serum-induced cell proliferation via decreasing the phosphorylation of ERK1/2 and Akt proteins. Baicalein inhibits cyclin D1 expression resulting in the blockade of cell cycle progression. Furthermore, bacalein attenuates serum-induced DNA binding activity of NF-κB. It also inhibits intimal hyperplasia after balloon vascular injury in rat, implying its therapeutic potential for treating restenosis after angioplasty.
Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a key role in various physiological and pathological conditions, including embryonic development, wound repair, inflammation, and tumor growth. Moreover, proliferating endothelial cells undergoing DNA synthesis are a common hallmark of angiogenic microvascular spouts. In the next two chapters, we investigate the effects of KS-5 and YD-3 on bFGF- and thrombin-induced angiogenesis in cultured human umbilical vein endothelial cells (HUVECs) in vitro and in vivo.
KS-5, an acridone-derivative compound, inhibits bFGF-induced cell proliferation in a concentration-dependent manner without exhibiting any significant cytotoxicity. The inhibitory effect is associated with decreasing DNA synthesis and abrogating ERK1/2 and Akt protein phosphorylation in endothelial cells. In addition, KS-5 also inhibits bFGF-induced phosphorylation of mTOR and the major downstream effectors, eIF4E and p70S6K, and leading to decreasing protein synthesis. Most importantly, KS-5 treatment in nude mice inhibited in vivo angiogenesis as revealed by matrigel implant assay.
YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole], a selective thrombin inhibitor, inhibits neovascularization in vivo induced by thrombin, protease-activated receptor (PAR) -1, and PAR-4, but not by vascular endothelial growth factor (VEGF). YD-3 also inhibits thrombin-, PAR-1- and PAR-4-, but not PAR-2-induced cell proliferation. YD-3 predominantly inhibits thrombin-induced VEGF receptor 2 (Flk-1) up-regulation, but not phosphorylation of ERK1/2 protein. Moreover, in a murine xenograft tumor model, YD-3 administered orally reveals significant antitumor activity without cytotoxicity.
In conclusion, the present study suggests that baicalein, KS-5 and YD-3 have antiproliferative effects both in vitro and in vivo and worthy of further development into drug candidates for treating restenosis and angiogenesis-dependent diseases.
en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:44:41Z (GMT). No. of bitstreams: 1
ntu-97-D91443008-1.pdf: 3105658 bytes, checksum: 11f94975731a88464262c8ea280a17ac (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents縮寫表……………………………………………………………… 1
中文摘要………………………………………………………… 3
英文摘要…………………………………………………………. 5
第一章 緒論
文獻回顧………………………………………………………… 9
研究動機與目的………………………………………………… 32
第二章 Baicalein抑制大鼠頸動脈氣球擴張損傷後之內膜增生是經由停滯血管平滑肌的細胞週期和抑制ERK、Akt及NFκB蛋白活化
中文摘要………………………………………………………… 34
英文摘要………………………………………………………… 35
緒言……………………………………………………………… 36
材料與方法……………………………………………………… 38
結果……………………………………………………………… 43
討論……………………………………………………………… 46
第三章 KS-5在體內及體外實驗抑制 bFGF 造成的血管新生之機轉探討
中文摘要………………………………………………………… 57
英文摘要………………………………………………………… 58
緒言……………………………………………………………… 59
材料與方法……………………………………………………… 61
結果………………………………………………………………. 64
討論………………………………………………………………. 67
第四章 Indazole衍生物YD-3專一性地抑制thrombin所造成的血管新生
中文摘要…………………………………………………………. 76
英文摘要…………………………………………………………. 77
緒言………………………………………………………………. 78
材料與方法………………………………………………………. 80
結果………………………………………………………………. 82
討論………………………………………………………………. 85
第五章 結論與展望…………………………………………………… 97
參考文獻………………………………………………………………… 104
著作……………………………………………………………………… 116
dc.language.isozh-TW
dc.subject血管平滑肌細胞zh_TW
dc.subject內皮細胞zh_TW
dc.subject血管再阻塞zh_TW
dc.subject血管新生zh_TW
dc.subject抗增生zh_TW
dc.subjectrestenosisen
dc.subjectantiproliferationen
dc.subjectangiogenesisen
dc.subjectvascular smooth muscle cellen
dc.subjectendothelial cellen
dc.titleBaicalein, KS-5與YD-3對血管平滑肌及內皮細胞之生長調控作用及在血管再阻塞與血管新生之藥效評估zh_TW
dc.titleEffects of Baicalein, KS-5 and YD-3 on Growth Regulation in Vascular Smooth Muscle Cells and Endothelial Cells, and Therapeutic Evaluation in Models of Restenosis and Angiogenesisen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃德富(Tur-Fu Huang),蘇銘嘉(Ming-Jai Su),楊春茂,顏茂雄
dc.subject.keyword血管平滑肌細胞,內皮細胞,血管再阻塞,血管新生,抗增生,zh_TW
dc.subject.keywordvascular smooth muscle cell,endothelial cell,restenosis,angiogenesis,antiproliferation,en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved