Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40311
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政忠
dc.contributor.authorFeng-Chia Hsuen
dc.contributor.author許豐家zh_TW
dc.date.accessioned2021-06-14T16:44:34Z-
dc.date.available2008-08-04
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citation1. M. Sigalas and E. N. Ecconomou, “Elastic and acoustic wave band structure,” J. Sound Vib. 158, 377 (1992)
2. M. S. Kushwaha, P. Halevi, L.Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys.Rev. Lett. 71, 2022 (1933)
3. M. S. Kushwaha, P. Halevi, G.. Martinez, L. Dobrzynski, and B.Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B 49, 2313 (1994)
4. M. S. Kushwaha and P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett. 64, 1085 (1994)
5. Zhengyou Liu, Xixiang Zhang, YiweiMao, Y. Y. Zhu, Zhiyu Yang, C.T. Chan, Ping Sheng, “Local Resonant Sonic Mateirals,” Science 289, 1734 (2000)
6. Manzhu Ke, Zhengyou Liu, Chunyin Qiu, Wengang Wang, and Jing Shi Ping Sheng, “Negative-refraction imaging with two-dimensional phononic crystals,” Phy. Rev. B 72. 064306 (2005)
7. Jing Li, Zhengyou Liu,* and Chunyin Qiu, “Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal,” Phy. Rev. B 73, 054302 (2006)
8. Suxia Yang, J. H. Page, Zhengyou Liu, M. L.Cowan, C. T. Chan, and Ping Sheng, ”Focusing of Sound in a 3D Phononic Crystal,” Phy. Rev. Lett. 93, 024301 (2004)
9. Tsung-Tsong Wu, Chung-Hao Hsu, and Jia-Hong Sun, “Design of a highly magnified directional acoustic source based on the resonant cavity of two-dimensional phononic crystals,” Appl. Phys. Lett. 89, 171912 (2006)
10. Y.Pennec, B. Djafari-Rouhani, J. O. Vasseur, and H. Larabi, A. Khelif, A. Choujaa, S. Benchabane, and V. Laude, “Acoustic channel drop tunneling in a phononic crystal, ” Appl.Phys.Lett. 87, 261912 (2005)
11. M. M. Sigalas, “Defect states of acoustic waves in a two-dimensional lattice of solid cylinders,” J. Appl. Phys. 84, 3026 (1998)
12. Fugen Wu, Zhengyou Liu, and Youyan Liu, 'Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals' Phys. Rev. E 69, 066609 (2004)
13. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,” Phys. Rev. B 68, 214301 (2003)
14. A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, and P. A. Deymier, “Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials,” Phys. Rev. B 68, 024302 (2003)
15. A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, Ph. Lambin, and L. Dobrzynski, “Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal,” Phys. Rev. B 65, 174308 (2002)
16. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys.Rev.Lett., 58(20), 2059-2062 (1987)
17. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63(18), 1950-1953 (1989)
18. Tsung-Tsong Wu, Zi-Gui Huang, and S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy,” Phys. Rev. B 69, 094301 (2004)
19. Sun, J.H. ; Wu, T.T., “Analyses of mode coupling in joined parallel phononic crystal waveguides,” Phys. Rev. B 71, 174303 (2005)
20. Y. Tanaka, Y. Tomoyasu, and S.-I. Tamura, “Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch,” Phys Rev. B 62, 7387(2000)
21. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, “Complete band gaps in two-dimensional phononic crystal slabs,” Phys. Rev. E 74, 046610 (2006)
22. J. O. Vasseur, A.-C. Hladky-Hennion, B. Djafari-Rouhani, F. Duval, B. Dubus, anennec, and P.A. Deymier, “Waveguiding in two-dimensional piezoelectric phononic crystal plates,” J. Appl. Phys. 101, 114904 (2007)
23. 蔡子勤, “具週期性柱狀表面平板之板波局部共振現象研究,” 國立台灣大學應用力學研究所碩士論文(2007)
24. Zhengyou Liu, C. T. Chan, Ping Sheng, A. L. Goertzen, and J. H. Page, “Elastic wave scattering by periodic structures of spherical objects: Theory and experiment,” Phys. Rev. B 62, 2446 - 2457 (2000)
25. M. Kafesaki, and E. N. Economou, “Multiple-scattering theory for three-dimensional periodic acoustic composites,” Phys. Rev. B 60, 11993 - 12001 (1999)
26. I. E. Psarobas, N. Stefanou, and A. Modinos, “Scattering of elastic waves by periodic arrays of spherical bodies,” Phys. Rev. B 62, 278 - 291 (2000)
27. Yun Lai, Xiangdong Zhang, and Zhao-Qing Zhang, “Large sonic band gaps in 12-fold quasicrystals,” J. Appl. Phys. 91, 6191 (2002)
28. Jun Mei, Zhengyou Liu, Jing Shi, and Decheng Tian, “Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: An ideal approach for band-structure calculations,” Phys. Rev. B 67, 245107 (2003)
29. Stefan Enoch, Boris Gralak, Gerard Tayeb, “Enhanced emission with angular confinement from photonic crystals,” Appl. Phys. Lett. 81, 1588 (2002)
30. Irfan Bulu Humeyra Caglayan, and Ekmei Ozbay, “Highly directive radiation from sources embedded inside phtonic crystals,” Appl. Phys. Lett. 83, 3263 (2003)
31. B. Temelkuran, Mehmet Bayindir, and E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000)
32. Biswas, R.; Ozbay, E.; Temelkuran, B.; Bayindir, Mehmet; Sigalas, M. M.; Ho, K.-M. “Exceptionally directional sources with photonic-bandgap crystals,” J. Opt. Soc. Am. B 18, 1684-1689 (2001)
33. Chunyin Qiu, Zhengyou Liu, Jing Shi, and C. T. Chan, “Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals,” Appl. Phys. Lett. 86, 224105 (2005)
34. Manzhu Ke, Zhengyou Liu, Pei Pang, Wengang Wang, Zhigang Cheng, Jing Shi, Xingzhong Zhao, and Weijia Wen, “Highly directional acoustic wave radiation based on asymmetrical two-dimensional phononic crystal resonant cavity,” Appl. Phys. Lett. 88, 263505 (2006)
35. T. Ochiai and J. Sánchez-Dehesa, “Localized defect modes in finite metallic two-dimensional photonic crystals,” Phys. Rev. B 65, 245111 (2002)
36. S. Nojima. “Determination of optical modes in two-dimensional finite-size photonic crystals by photonic resonance scattering,” Appl. Phys. Lett. 79, 1959 (2001)
37. S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green's function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590 - 4602 (1994)
38. M. Sigalas, M. S. Kushwaha, E. N. Economou, M. Kafesaki, I. E. Psarobas, and W. Steurer, “Classical vibrational modes in phononic lattices: theory and experiment,” Z. Kristallogr. 220, 765 (2005).
39. P.M.Morse & H. Feshbach, “Methods of Theoretical Physics,” New York: McGraw-Hill, 1953
40. Carl D. Meyer, “Matrix Analysis and Applied Linear Algebra,” Society for Industrial and Applied Mathematics, c2000
41. M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions,” New York : Dover Publications, 1965
42. Karl F. Graff, “Wave Motion in Elastic Solids,” Oxford University Press (1975)
43. Jerry B. Marion, Mark A. Heald, “Classical Electromagnetic Radiation,” ACADEMIC PRESS (1980)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40311-
dc.description.abstract當在一個完美周期的聲子晶體結構中,移除單一或更改局部多個散射體之幾何條件會引致局域共振模態。本文採用多重散射法(Multiple Scattering Theory)探討二維有限尺寸聲子晶體之缺陷模態現象,文中首先以單一圓柱散射體之散射矩陣(T-Matrix)與叢集散射體之自恰方程式(Self-Consistent Equation)並搭配布拉格定理(Bloch theorem)進行聲子晶體散射總場、穿射率、散射截面與頻散曲線之分析。
其次,針對二維有限尺寸聲子晶體缺陷模態與遠場行為散射截面之關係,由散射頻譜可對應出聲子晶體頻溝之現象,並測定缺陷模態之特徵頻率,其結果與現有其他方法之分析相符。此外,基於對局域共振模態之研究,本文亦提出以聲子晶體點共振腔結構產生具放大效果之指向性聲波波源,其中指出共振腔尺寸及局域共振模態之發生頻率為聲波波源指向性效果及放大倍率之關鍵。
本文對聲子晶體局域共振模態的研究結果及聲子晶體共振腔結構概念的提出,對於水下聲納系統、指向性麥克風或壓電換能器之前瞻研發,可有相當助益。
zh_TW
dc.description.abstractIn this thesis, we present a comprehensive analysis of localized defect modes in two-dimensional finite-size phononic crystals by means of the multiple scattering theory (MST). Based on the theory, we calculate the dispersion diagram, the transmission coefficients, the scattering cross sections, and the elastic field distribution. We find that the far-field analysis based on the scattering cross section can show resonance peaks owing to the resonant tunneling through the defect. Further more, the appearance of a flat plateau feature in the scattering spectra coheres well with the band gap phenomenon. Based on the MST analysis, we also propose a directional enhanced acoustic source by introducing a tunable defect mode. A simple geometrical construction gives a very comprehensive guideline to obtain an enhanced emission with angular confinement from the phononic crystals. We demonstrate that the operating frequency of defect modes and the number of surrounding layers of the cavity are the key factors to the directivity and the amplification ratio of the directional enhanced acoustic source.en
dc.description.provenanceMade available in DSpace on 2021-06-14T16:44:34Z (GMT). No. of bitstreams: 1
ntu-97-R95543020-1.pdf: 3299891 bytes, checksum: c223b96979230acb9f385e2547d37516 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
Notations V
Contents VIII
Chapter 1 Introduction 1
1-1 Research Motivation 1
1-2 Literature Review 2
1-3 Overview 4
Chapter 2 Multiple Scattering Theory 6
2-1 Navier’s Equation and T-Matrix formulation 7
2-2 Self-Consistent Equation 12
2-3 Source Feeding 14
2-4 Transmission Coefficient 14
2-5 Band Structure 15
Chapter 3 The Far-field Responses of Finite-Size Phononic Crystals 19
3-1 Scattering Cross Section 20
3-2 Relation between Scattering Cross Section and Phononic Band Gap 21
3-3 Determination of Defect Modes by Using Scattering Cross Section 23
Chapter 4 Designs of Directional Acoustic Source Based on Point Cavities 35
4-1 Properties of the Transmittance at the Band Gap Frequencies 36
4-2 The Radiation Patterns Associated with Band Edge Frequencies 38
4-3 Asymmetric Filling Fraction Cavity 39
4-4 Tuning the Resonance Frequency of the Defect Mode 41
4-5 Amplification Ratios Versus the Number of Surrounding Layers 43
Chapter 5 Conclusions and Future Works 62
5-1 Conclusions 62
5-2 Future Works 63
Appendix (A) Derivation of T-Matrix 65
Appendix (B) Coordinate Transformation of Scattered Wave 68
Reference 70
dc.language.isoen
dc.subject指向性聲波波源zh_TW
dc.subject聲子晶體zh_TW
dc.subject多重散射法zh_TW
dc.subject缺陷態zh_TW
dc.subject散射截面zh_TW
dc.subjectMultiple Scattering Theoryen
dc.subjectDirectional Enhanced Acoustic Sourceen
dc.subjectScattering Cross Sectionen
dc.subjectDefect Modesen
dc.subjectPhononic Crystalen
dc.title二維有限尺寸聲子晶體區缺陷態之遠場行為及其用於指向性聲波波源之設計zh_TW
dc.titleDetermination of Defect Modes in Two-Dimensional Finite-Size Phononic Crystal Using Scattering Cross Sectionen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李永春,馬劍清,尹慶中
dc.subject.keyword聲子晶體,多重散射法,缺陷態,散射截面,指向性聲波波源,zh_TW
dc.subject.keywordPhononic Crystal,Multiple Scattering Theory,Defect Modes,Scattering Cross Section,Directional Enhanced Acoustic Source,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2008-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved