請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40311完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳政忠 | |
| dc.contributor.author | Feng-Chia Hsu | en |
| dc.contributor.author | 許豐家 | zh_TW |
| dc.date.accessioned | 2021-06-14T16:44:34Z | - |
| dc.date.available | 2008-08-04 | |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | 1. M. Sigalas and E. N. Ecconomou, “Elastic and acoustic wave band structure,” J. Sound Vib. 158, 377 (1992)
2. M. S. Kushwaha, P. Halevi, L.Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys.Rev. Lett. 71, 2022 (1933) 3. M. S. Kushwaha, P. Halevi, G.. Martinez, L. Dobrzynski, and B.Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B 49, 2313 (1994) 4. M. S. Kushwaha and P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett. 64, 1085 (1994) 5. Zhengyou Liu, Xixiang Zhang, YiweiMao, Y. Y. Zhu, Zhiyu Yang, C.T. Chan, Ping Sheng, “Local Resonant Sonic Mateirals,” Science 289, 1734 (2000) 6. Manzhu Ke, Zhengyou Liu, Chunyin Qiu, Wengang Wang, and Jing Shi Ping Sheng, “Negative-refraction imaging with two-dimensional phononic crystals,” Phy. Rev. B 72. 064306 (2005) 7. Jing Li, Zhengyou Liu,* and Chunyin Qiu, “Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal,” Phy. Rev. B 73, 054302 (2006) 8. Suxia Yang, J. H. Page, Zhengyou Liu, M. L.Cowan, C. T. Chan, and Ping Sheng, ”Focusing of Sound in a 3D Phononic Crystal,” Phy. Rev. Lett. 93, 024301 (2004) 9. Tsung-Tsong Wu, Chung-Hao Hsu, and Jia-Hong Sun, “Design of a highly magnified directional acoustic source based on the resonant cavity of two-dimensional phononic crystals,” Appl. Phys. Lett. 89, 171912 (2006) 10. Y.Pennec, B. Djafari-Rouhani, J. O. Vasseur, and H. Larabi, A. Khelif, A. Choujaa, S. Benchabane, and V. Laude, “Acoustic channel drop tunneling in a phononic crystal, ” Appl.Phys.Lett. 87, 261912 (2005) 11. M. M. Sigalas, “Defect states of acoustic waves in a two-dimensional lattice of solid cylinders,” J. Appl. Phys. 84, 3026 (1998) 12. Fugen Wu, Zhengyou Liu, and Youyan Liu, 'Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals' Phys. Rev. E 69, 066609 (2004) 13. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,” Phys. Rev. B 68, 214301 (2003) 14. A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, and P. A. Deymier, “Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials,” Phys. Rev. B 68, 024302 (2003) 15. A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, Ph. Lambin, and L. Dobrzynski, “Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal,” Phys. Rev. B 65, 174308 (2002) 16. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys.Rev.Lett., 58(20), 2059-2062 (1987) 17. E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63(18), 1950-1953 (1989) 18. Tsung-Tsong Wu, Zi-Gui Huang, and S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy,” Phys. Rev. B 69, 094301 (2004) 19. Sun, J.H. ; Wu, T.T., “Analyses of mode coupling in joined parallel phononic crystal waveguides,” Phys. Rev. B 71, 174303 (2005) 20. Y. Tanaka, Y. Tomoyasu, and S.-I. Tamura, “Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch,” Phys Rev. B 62, 7387(2000) 21. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, “Complete band gaps in two-dimensional phononic crystal slabs,” Phys. Rev. E 74, 046610 (2006) 22. J. O. Vasseur, A.-C. Hladky-Hennion, B. Djafari-Rouhani, F. Duval, B. Dubus, anennec, and P.A. Deymier, “Waveguiding in two-dimensional piezoelectric phononic crystal plates,” J. Appl. Phys. 101, 114904 (2007) 23. 蔡子勤, “具週期性柱狀表面平板之板波局部共振現象研究,” 國立台灣大學應用力學研究所碩士論文(2007) 24. Zhengyou Liu, C. T. Chan, Ping Sheng, A. L. Goertzen, and J. H. Page, “Elastic wave scattering by periodic structures of spherical objects: Theory and experiment,” Phys. Rev. B 62, 2446 - 2457 (2000) 25. M. Kafesaki, and E. N. Economou, “Multiple-scattering theory for three-dimensional periodic acoustic composites,” Phys. Rev. B 60, 11993 - 12001 (1999) 26. I. E. Psarobas, N. Stefanou, and A. Modinos, “Scattering of elastic waves by periodic arrays of spherical bodies,” Phys. Rev. B 62, 278 - 291 (2000) 27. Yun Lai, Xiangdong Zhang, and Zhao-Qing Zhang, “Large sonic band gaps in 12-fold quasicrystals,” J. Appl. Phys. 91, 6191 (2002) 28. Jun Mei, Zhengyou Liu, Jing Shi, and Decheng Tian, “Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: An ideal approach for band-structure calculations,” Phys. Rev. B 67, 245107 (2003) 29. Stefan Enoch, Boris Gralak, Gerard Tayeb, “Enhanced emission with angular confinement from photonic crystals,” Appl. Phys. Lett. 81, 1588 (2002) 30. Irfan Bulu Humeyra Caglayan, and Ekmei Ozbay, “Highly directive radiation from sources embedded inside phtonic crystals,” Appl. Phys. Lett. 83, 3263 (2003) 31. B. Temelkuran, Mehmet Bayindir, and E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603 (2000) 32. Biswas, R.; Ozbay, E.; Temelkuran, B.; Bayindir, Mehmet; Sigalas, M. M.; Ho, K.-M. “Exceptionally directional sources with photonic-bandgap crystals,” J. Opt. Soc. Am. B 18, 1684-1689 (2001) 33. Chunyin Qiu, Zhengyou Liu, Jing Shi, and C. T. Chan, “Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals,” Appl. Phys. Lett. 86, 224105 (2005) 34. Manzhu Ke, Zhengyou Liu, Pei Pang, Wengang Wang, Zhigang Cheng, Jing Shi, Xingzhong Zhao, and Weijia Wen, “Highly directional acoustic wave radiation based on asymmetrical two-dimensional phononic crystal resonant cavity,” Appl. Phys. Lett. 88, 263505 (2006) 35. T. Ochiai and J. Sánchez-Dehesa, “Localized defect modes in finite metallic two-dimensional photonic crystals,” Phys. Rev. B 65, 245111 (2002) 36. S. Nojima. “Determination of optical modes in two-dimensional finite-size photonic crystals by photonic resonance scattering,” Appl. Phys. Lett. 79, 1959 (2001) 37. S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green's function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590 - 4602 (1994) 38. M. Sigalas, M. S. Kushwaha, E. N. Economou, M. Kafesaki, I. E. Psarobas, and W. Steurer, “Classical vibrational modes in phononic lattices: theory and experiment,” Z. Kristallogr. 220, 765 (2005). 39. P.M.Morse & H. Feshbach, “Methods of Theoretical Physics,” New York: McGraw-Hill, 1953 40. Carl D. Meyer, “Matrix Analysis and Applied Linear Algebra,” Society for Industrial and Applied Mathematics, c2000 41. M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions,” New York : Dover Publications, 1965 42. Karl F. Graff, “Wave Motion in Elastic Solids,” Oxford University Press (1975) 43. Jerry B. Marion, Mark A. Heald, “Classical Electromagnetic Radiation,” ACADEMIC PRESS (1980) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/40311 | - |
| dc.description.abstract | 當在一個完美周期的聲子晶體結構中,移除單一或更改局部多個散射體之幾何條件會引致局域共振模態。本文採用多重散射法(Multiple Scattering Theory)探討二維有限尺寸聲子晶體之缺陷模態現象,文中首先以單一圓柱散射體之散射矩陣(T-Matrix)與叢集散射體之自恰方程式(Self-Consistent Equation)並搭配布拉格定理(Bloch theorem)進行聲子晶體散射總場、穿射率、散射截面與頻散曲線之分析。
其次,針對二維有限尺寸聲子晶體缺陷模態與遠場行為散射截面之關係,由散射頻譜可對應出聲子晶體頻溝之現象,並測定缺陷模態之特徵頻率,其結果與現有其他方法之分析相符。此外,基於對局域共振模態之研究,本文亦提出以聲子晶體點共振腔結構產生具放大效果之指向性聲波波源,其中指出共振腔尺寸及局域共振模態之發生頻率為聲波波源指向性效果及放大倍率之關鍵。 本文對聲子晶體局域共振模態的研究結果及聲子晶體共振腔結構概念的提出,對於水下聲納系統、指向性麥克風或壓電換能器之前瞻研發,可有相當助益。 | zh_TW |
| dc.description.abstract | In this thesis, we present a comprehensive analysis of localized defect modes in two-dimensional finite-size phononic crystals by means of the multiple scattering theory (MST). Based on the theory, we calculate the dispersion diagram, the transmission coefficients, the scattering cross sections, and the elastic field distribution. We find that the far-field analysis based on the scattering cross section can show resonance peaks owing to the resonant tunneling through the defect. Further more, the appearance of a flat plateau feature in the scattering spectra coheres well with the band gap phenomenon. Based on the MST analysis, we also propose a directional enhanced acoustic source by introducing a tunable defect mode. A simple geometrical construction gives a very comprehensive guideline to obtain an enhanced emission with angular confinement from the phononic crystals. We demonstrate that the operating frequency of defect modes and the number of surrounding layers of the cavity are the key factors to the directivity and the amplification ratio of the directional enhanced acoustic source. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-14T16:44:34Z (GMT). No. of bitstreams: 1 ntu-97-R95543020-1.pdf: 3299891 bytes, checksum: c223b96979230acb9f385e2547d37516 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV Notations V Contents VIII Chapter 1 Introduction 1 1-1 Research Motivation 1 1-2 Literature Review 2 1-3 Overview 4 Chapter 2 Multiple Scattering Theory 6 2-1 Navier’s Equation and T-Matrix formulation 7 2-2 Self-Consistent Equation 12 2-3 Source Feeding 14 2-4 Transmission Coefficient 14 2-5 Band Structure 15 Chapter 3 The Far-field Responses of Finite-Size Phononic Crystals 19 3-1 Scattering Cross Section 20 3-2 Relation between Scattering Cross Section and Phononic Band Gap 21 3-3 Determination of Defect Modes by Using Scattering Cross Section 23 Chapter 4 Designs of Directional Acoustic Source Based on Point Cavities 35 4-1 Properties of the Transmittance at the Band Gap Frequencies 36 4-2 The Radiation Patterns Associated with Band Edge Frequencies 38 4-3 Asymmetric Filling Fraction Cavity 39 4-4 Tuning the Resonance Frequency of the Defect Mode 41 4-5 Amplification Ratios Versus the Number of Surrounding Layers 43 Chapter 5 Conclusions and Future Works 62 5-1 Conclusions 62 5-2 Future Works 63 Appendix (A) Derivation of T-Matrix 65 Appendix (B) Coordinate Transformation of Scattered Wave 68 Reference 70 | |
| dc.language.iso | en | |
| dc.subject | 指向性聲波波源 | zh_TW |
| dc.subject | 聲子晶體 | zh_TW |
| dc.subject | 多重散射法 | zh_TW |
| dc.subject | 缺陷態 | zh_TW |
| dc.subject | 散射截面 | zh_TW |
| dc.subject | Multiple Scattering Theory | en |
| dc.subject | Directional Enhanced Acoustic Source | en |
| dc.subject | Scattering Cross Section | en |
| dc.subject | Defect Modes | en |
| dc.subject | Phononic Crystal | en |
| dc.title | 二維有限尺寸聲子晶體區缺陷態之遠場行為及其用於指向性聲波波源之設計 | zh_TW |
| dc.title | Determination of Defect Modes in Two-Dimensional Finite-Size Phononic Crystal Using Scattering Cross Section | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李永春,馬劍清,尹慶中 | |
| dc.subject.keyword | 聲子晶體,多重散射法,缺陷態,散射截面,指向性聲波波源, | zh_TW |
| dc.subject.keyword | Phononic Crystal,Multiple Scattering Theory,Defect Modes,Scattering Cross Section,Directional Enhanced Acoustic Source, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
